Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gestörter Fettabbau im Gehirn lässt Mäuse verdummen

19.05.2017

Eine Studie unter Leitung der Universität Bonn wirft einen neuen Blick auf die Entstehung von Demenzerkrankungen. Die Wissenschaftler unterbanden im Gehirn von Mäusen den Abbau eines bestimmten Fettmoleküls. Die Tiere lernten daraufhin deutlich schlechter und konnten sich nicht mehr so gut erinnern. Zudem stieg in ihrem Gehirn die Menge Alzheimer-spezifischer Proteine stark an. Auch warum die Mäuse verdummen, glauben die Forscher inzwischen zu wissen. Die Ergebnisse werden im Fachjournal „Autophagy“ vorgestellt.

Das sprichwörtliche „Gehirnschmalz“ gibt es wirklich: Abgesehen von Wasser besteht unser Denkorgan hauptsächlich aus Lipiden, vereinfacht gesagt: aus Fett. Die Lipide fungieren zum Beispiel als Isolierschicht um die Nervenfasern und verhindern so Kurzschlüsse. Sie sind aber auch ein Hauptbestandteil der dünnen Membranhäutchen, die die Gehirnzellen umgeben.


Nervenzelle mit gestörtem S1P-Abbau: Die gelb-orange markierten Müllsäcke haben sich nicht geschlossen, sondern sind durchlässig.

© AG van Echten-Deckert/Uni Bonn


Gesunde Kontrollnervenzelle mit intakten „Müllsäcken“ (rot).

© AG van Echten-Deckert/Uni Bonn

Sehr häufige Hirn-Lipide sind die sogenannten Sphingolipide. Eines ihrer Abbauprodukte, das S1P, spielt möglicherweise eine zentrale Rolle bei der Entstehung von Alzheimer und anderen Demenzerkrankungen. „Wir haben Mäuse gezüchtet, die in weiten Teilen ihres Gehirns S1P nicht weiter abbauen können“, erklärt Dr. Gerhild van Echten-Deckert. „Die Tiere zeigten daraufhin eine stark verringerte Lern- und Gedächtnisleistung.“

Van Echten-Deckert forscht als Privatdozentin am LIMES-Institut der Universität Bonn (das Akronym steht für „Life and Medical Sciences“). Sie war bislang eine der wenigen Expertinnen weltweit, die sich für die Rolle von S1P im Gehirn interessieren. Die neue Studie könnte das fundamental ändern. Denn die Forscher der Universität Bonn, des Universitätsklinikums Jena, des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) sowie aus San Francisco und Madrid konnten zeigen, welch weit reichende Konsequenzen der gestörte S1P-Abbau hat.

„Selbstfressen“ hält Gehirn gesund

Normalerweise wird das Lipid in verschiedene Teile zerlegt. Eines der Produkte, die dabei entstehen, wird bei einem weiteren Stoffwechselweg dringend benötigt – der so genannten Autophagie. Dieser Mechanismus (wörtliche Übersetzung: „Selbstfressen“) ermöglicht es Zellen, eigene Bestandteile zu verdauen und zu recyceln. So werden die Zellen beispielsweise defekte Proteine oder Zellorganellen los, die ihre Aufgabe nicht mehr erfüllen.

Die intrazelluläre Müllabfuhr arbeitet in zwei Schritten: Zunächst verpackt sie den Abfall in winzigen „Müllsäcken“. Diese verschmelzen dann mit anderen „Beuteln“, die hoch reaktive Enzyme enthalten. Die Enzyme „schreddern“ den Inhalt der Müllsäcke und entsorgen ihn so.

Das Abbauprodukt von S1P ist an der Verpackung des Abfalls in den intrazellulären Müllsäcken beteiligt. „Ohne Abbau von S1P bilden sich weniger geschlossene Müllbeutel; die Autophagie funktioniert dann nicht mehr störungsfrei“, erklärt der Erstautor der Studie Daniel Mitroi, der gerade seine Promotion am LIMES-Institut abgeschlossen hat. „Im Gehirn unserer Mäuse häuften sich daher schädliche Substanzen an. Dazu zählte etwa das Protein APP, das bei der Entstehung der Alzheimer-Erkrankung eine Schlüsselrolle spielt.“

Autophagie ist nicht nur für die korrekte Funktion des Gehirns wichtig. Wenn die intrazelluläre Müllabfuhr irgendwo im Körper nicht richtig arbeitet, sind schwere Krankheiten die Folge. Der Japaner Yoshinori Ohsumi wurde für seine Arbeiten zu diesem lebenswichtigen Mechanismus im vergangenen Jahr mit dem Medizin-Nobelpreis ausgezeichnet.

Die Ergebnisse der aktuellen Studie rücken einen bislang völlig unbeachteten Entstehungsmechanismus für Demenzerkrankungen in den Blick. „Möglicherweise tragen unsere Arbeiten langfristig dazu bei, dass diese Störungen des Gehirns irgendwann einmal erfolgreich behandelt werden können“, hofft Dr. van Echten-Deckert.

Publikation: Daniel N. Mitroi, Indulekha Karunakaran, Markus Gräler, Julie D. Saba, Dan Ehninger, María Dolores Ledesma und Gerhild van Echten-Deckert: SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production; Autophagy; DOI: 10.1080/15548627.2017.1291471

Kontakt:

Privatdozentin Dr. Gerhild van Echten-Deckert
LIMES-Institut
Universität Bonn
Tel. 0228/732703
E-Mail: g.echten.deckert@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Autophagie Demenzerkrankungen Fettabbau Gehirn Mäuse Nervenfasern S1P

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mechanismus des bakteriellen Geruchssinns entdeckt
19.05.2017 | Forschungszentrum Jülich GmbH

nachricht Wie Krebszellen die Lunge fluten
19.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Erstmals gemessen: Quantenfeldtheorie im Quanten-Simulator

Eine neue Art der Vermessung von Vielteilchen-Quantensystemen präsentiert die TU Wien in Kooperation mit der Universität Heidelberg nun im Fachjournal „Nature“.

In „Quanten-Simulatoren“ kann man bislang unbeantwortbaren Fragen nachgehen.
Was geschah am Beginn des Universums? Wie kann man die Struktur von...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gaming trifft Wissenschaft

19.05.2017 | Veranstaltungen

Internationale Konferenz zur Präzisionstechnik und Nanotechnologie

19.05.2017 | Veranstaltungen

Über 500 Wissenschaftler tagen auf dem Campus der TU Kaiserslautern

18.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisenmangel hemmt marine Mikroorganismen

19.05.2017 | Ökologie Umwelt- Naturschutz

Ein neuer Blick in die Lunge (und andere Organe)

19.05.2017 | Medizintechnik

Wie Enzyme kommunizieren

19.05.2017 | Biowissenschaften Chemie