Gesellige Rezeptoren: zu zweit, zu vielen oder in der Masse

Auf der Oberfläche dieser Nervenzelle unzählige Eph-Rezeptoren (grün). Werden diese künstlich zur Gruppierung angeregt, so zieht sich der auswachsende Zellfortsatz, das Axon (Spitze in rot), zurück.<br><br>© MPI für Neurobiologie / Dudanova<br>

Wissenschaftler des Max-Planck-Instituts (MPI) für Neurobiologie in Martinsried bei München haben mit ihren Kollegen vom MPI für molekulare Physiologie in Dortmund entdeckt, dass die Ephrin/Eph-Komplexe in Dreier- oder Vierergruppen zusammenfinden müssen, um aktiv zu werden. Die Erkenntnis hilft die Kommunikation zwischen Zellen zu verstehen und liefert Grundlagen um Krankheiten, die auf Ausfällen dieses Leitsystems basieren, zu untersuchen.

Kommen Menschen zusammen, gibt es meist viel zu bereden. Ganz ähnlich sieht das bei unseren Zellen aus. Wachsen Zellen zum Beispiel während der Entwicklung aufeinander zu, so müssen sie mit den umgebenden Zellen klären, ob sie am richtigen Platz im Organismus sind und mit welchen Zellen sie sich verbinden sollen. Einen besonders hohen Kommunikationsbedarf gibt es im Gehirn, wo ständig neue Kontakte zwischen Nervenzellen entstehen und wieder verschwinden. Nur wenn sich die richtigen Zellen miteinander verbinden, kann zum Beispiel etwas Neues gelernt werden. Und auch ein wachsender Tumor muss sich mit den Zellen seiner Umgebung austauschen, um wachsen zu können.

„Es ist von grundlegender Bedeutung zu verstehen, wie Zellen miteinander kommunizieren“, sagt Rüdiger Klein, Direktor am Max-Planck-Institut für Neurobiologie. Zusammen mit seiner Abteilung erforscht er schon seit Jahren die „Sprache“ der Zellen. Im Fokus der Wissenschaftler stehen dabei die sogenannten Eph-Rezeptoren und ihre Bindungspartner, die Ephrine.

Die Zellkommunikation über Ephrine/Eph-Rezeptoren spielt bei den meisten Begegnungen zwischen Zellen eine Rolle. Als Resultat dieser Kommunikation stößt in der Regel eine Zelle die andere ab, die dann in eine andere Richtung weiterwächst. Viele solcher Interaktionen lenken die Zelle an den richtigen Ort. Das Lenksystem, die Ephrine und Eph-Rezeptoren, sitzen auf der Oberfläche von Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, so bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die schließlich zur Trennung des Ephrin/Eph-Komplexes und zur Abstoßung der beiden Zellen voneinander führt.

„Damit nicht ein falscher Alarm die zellulären Prozesse auslöst, haben viele Rezeptorsysteme einen Sicherheitscode eingebaut“, erklärt Rüdiger Klein. „Es wird nur dann ein Signal in die Zelle weitergegeben, wenn zwei Rezeptor/Bindungspartner-Paare zu einem sogenannten Dimer zusammenkommen.“ Doch bei Ephrinen und Eph-Rezeptoren ist das anders. Ephrin/Eph-Komplexe kommen in Dimeren, aber häufig auch in größeren Gruppen auf den Zellmembranen zusammen. Wie dies die Fähigkeit zur Abstoßung und deren Stärke beeinflusst, blieb unklar.

Nun ist es den Martinsrieder Neurobiologen zusammen mit ihren Kollegen vom Max-Planck-Institut für molekulare Physiologie in Dortmund gelungen, die Gruppenbildung von Ephrin/Eph-Komplexen in der Zellkultur künstlich auszulösen und zu untersuchen. Die Ergebnisse zeigen, dass die sonst üblichen Dimere bei Eph-Rezeptoren inaktiv sind. Erst Tri- und Tetramere lösten die Signale aus, die zur Abstoßung der Zellen führen. Die Arbeitshypothese der Wissenschaftler, dass eine größere Gruppe ein stärkeres Signal auslöst, erwies sich jedoch als zu einfach. „Es hat eine ganze Zeit gebraucht, bis wir das System durchschaut haben“, berichtet Andreas Schaupp, der Erstautor der Studie. „Es kommt nämlich nicht auf die Größe einer einzelnen Gruppe an, sondern auf das Verhältnis der Gruppen zueinander.“ Je mehr Tri- und Tetramere und je weniger Dimere in der Zellmembran vorhanden sind, desto stärker ist das Signal zur Zellabstoßung. Kommen dagegen vor allem Dimere und nur wenige Multimere vor, kommt es zu keiner oder nur einer geringen Reaktion. „Über diesen Mechanismus kann eine Zelle sehr fein abstimmen, ob sie eine andere Zelle zur Kehrtwende bewegt oder sie nur knapp an sich vorbei lenkt“, freut sich Rüdiger Klein über das Ergebnis. Es ist ein wichtiger Schritt um zu verstehen, wie wandernde und wachsende Zellen ihren Weg finden und warum dieses Leitsystem bei manchen Krankheiten versagt.

Originalpublikation
Andreas Schaupp, Ola Sabet, Irina Dudanova, Marion Ponserre, Philippe Bastiaens, Rüdiger Klein
The composition of EphB2 clusters determines the strength in the cellular repulsion response

Journal of Cell Biology. 03. Februar 2014

Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 – 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Rüdiger Klein
Abteilung Moleküle – Signale – Entwicklung
Max-Planck-Institut für Neurobiologie, Martinsried
Email: rklein@neuro.mpg.de
http://www.neuro.mpg.de/klein
– Webseite der Abteilung von Prof. Rüdiger Klein

Media Contact

Dr. Stefanie Merker Max-Planck-Institut

Weitere Informationen:

http://www.neuro.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer