Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gesellige Rezeptoren: zu zweit, zu vielen oder in der Masse

03.02.2014
Wandernde oder wachsende Zellen müssen sich im Körper zurechtfinden. Eine Fehlleitung führt in der Regel zu Krankheiten oder Entwicklungsstörungen. Als Wegweiser dienen den Zellen sogenannte Eph-Rezeptoren und ihre Bindungspartner, die Ephrine.

Wissenschaftler des Max-Planck-Instituts (MPI) für Neurobiologie in Martinsried bei München haben mit ihren Kollegen vom MPI für molekulare Physiologie in Dortmund entdeckt, dass die Ephrin/Eph-Komplexe in Dreier- oder Vierergruppen zusammenfinden müssen, um aktiv zu werden. Die Erkenntnis hilft die Kommunikation zwischen Zellen zu verstehen und liefert Grundlagen um Krankheiten, die auf Ausfällen dieses Leitsystems basieren, zu untersuchen.


Auf der Oberfläche dieser Nervenzelle unzählige Eph-Rezeptoren (grün). Werden diese künstlich zur Gruppierung angeregt, so zieht sich der auswachsende Zellfortsatz, das Axon (Spitze in rot), zurück.

© MPI für Neurobiologie / Dudanova

Kommen Menschen zusammen, gibt es meist viel zu bereden. Ganz ähnlich sieht das bei unseren Zellen aus. Wachsen Zellen zum Beispiel während der Entwicklung aufeinander zu, so müssen sie mit den umgebenden Zellen klären, ob sie am richtigen Platz im Organismus sind und mit welchen Zellen sie sich verbinden sollen. Einen besonders hohen Kommunikationsbedarf gibt es im Gehirn, wo ständig neue Kontakte zwischen Nervenzellen entstehen und wieder verschwinden. Nur wenn sich die richtigen Zellen miteinander verbinden, kann zum Beispiel etwas Neues gelernt werden. Und auch ein wachsender Tumor muss sich mit den Zellen seiner Umgebung austauschen, um wachsen zu können.

„Es ist von grundlegender Bedeutung zu verstehen, wie Zellen miteinander kommunizieren“, sagt Rüdiger Klein, Direktor am Max-Planck-Institut für Neurobiologie. Zusammen mit seiner Abteilung erforscht er schon seit Jahren die "Sprache" der Zellen. Im Fokus der Wissenschaftler stehen dabei die sogenannten Eph-Rezeptoren und ihre Bindungspartner, die Ephrine.

Die Zellkommunikation über Ephrine/Eph-Rezeptoren spielt bei den meisten Begegnungen zwischen Zellen eine Rolle. Als Resultat dieser Kommunikation stößt in der Regel eine Zelle die andere ab, die dann in eine andere Richtung weiterwächst. Viele solcher Interaktionen lenken die Zelle an den richtigen Ort. Das Lenksystem, die Ephrine und Eph-Rezeptoren, sitzen auf der Oberfläche von Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, so bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die schließlich zur Trennung des Ephrin/Eph-Komplexes und zur Abstoßung der beiden Zellen voneinander führt.

„Damit nicht ein falscher Alarm die zellulären Prozesse auslöst, haben viele Rezeptorsysteme einen Sicherheitscode eingebaut“, erklärt Rüdiger Klein. „Es wird nur dann ein Signal in die Zelle weitergegeben, wenn zwei Rezeptor/Bindungspartner-Paare zu einem sogenannten Dimer zusammenkommen.“ Doch bei Ephrinen und Eph-Rezeptoren ist das anders. Ephrin/Eph-Komplexe kommen in Dimeren, aber häufig auch in größeren Gruppen auf den Zellmembranen zusammen. Wie dies die Fähigkeit zur Abstoßung und deren Stärke beeinflusst, blieb unklar.

Nun ist es den Martinsrieder Neurobiologen zusammen mit ihren Kollegen vom Max-Planck-Institut für molekulare Physiologie in Dortmund gelungen, die Gruppenbildung von Ephrin/Eph-Komplexen in der Zellkultur künstlich auszulösen und zu untersuchen. Die Ergebnisse zeigen, dass die sonst üblichen Dimere bei Eph-Rezeptoren inaktiv sind. Erst Tri- und Tetramere lösten die Signale aus, die zur Abstoßung der Zellen führen. Die Arbeitshypothese der Wissenschaftler, dass eine größere Gruppe ein stärkeres Signal auslöst, erwies sich jedoch als zu einfach. „Es hat eine ganze Zeit gebraucht, bis wir das System durchschaut haben“, berichtet Andreas Schaupp, der Erstautor der Studie. „Es kommt nämlich nicht auf die Größe einer einzelnen Gruppe an, sondern auf das Verhältnis der Gruppen zueinander.“ Je mehr Tri- und Tetramere und je weniger Dimere in der Zellmembran vorhanden sind, desto stärker ist das Signal zur Zellabstoßung. Kommen dagegen vor allem Dimere und nur wenige Multimere vor, kommt es zu keiner oder nur einer geringen Reaktion. „Über diesen Mechanismus kann eine Zelle sehr fein abstimmen, ob sie eine andere Zelle zur Kehrtwende bewegt oder sie nur knapp an sich vorbei lenkt“, freut sich Rüdiger Klein über das Ergebnis. Es ist ein wichtiger Schritt um zu verstehen, wie wandernde und wachsende Zellen ihren Weg finden und warum dieses Leitsystem bei manchen Krankheiten versagt.

Originalpublikation
Andreas Schaupp, Ola Sabet, Irina Dudanova, Marion Ponserre, Philippe Bastiaens, Rüdiger Klein
The composition of EphB2 clusters determines the strength in the cellular repulsion response

Journal of Cell Biology. 03. Februar 2014

Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Rüdiger Klein
Abteilung Moleküle – Signale – Entwicklung
Max-Planck-Institut für Neurobiologie, Martinsried
Email: rklein@neuro.mpg.de
http://www.neuro.mpg.de/klein
- Webseite der Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops