Geschmolzene Proteine

Proteine sind Feststoffe. Beim Erhitzen zersetzen sie sich meist bevor sie schmelzen oder gehen bei niedrigen Drücken in die Gasphase über.

In die flüssige Form lassen sie sich nicht überführen, es sei denn, man löst sie in einem Lösungsmittel. Ein Team von der University of Bristol (UK) und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat es jetzt erstmals geschafft, ein Protein ohne Zuhilfenahme eines Lösungsmittels zu verflüssigen.

Wie die Forscher um Stephen Mann in der Zeitschrift Angewandte Chemie berichten, liegt der Trick darin, die Proteinoberfläche mit einem polymeren Tensid zu modifizieren.

Die Wissenschaftler verwendeten Ferritin für ihre Versuche, ein großes Protein, das Tieren und Pflanzen als Speicherstoff für Eisen dient. Ferritin bildet eine Hohlkugel, in der tausende Eisenionen Platz haben. An die Oberfläche solcher eisenhaltigen Ferritin-Kugeln knüpfte Manns Mitarbeiter Adam Perriman Polymerketten aus je einem Polyethylenoxid- und einem Kohlenwasserstoff-Teil. Pro Ferritin-Molekül wurden etwa 240 Polymerketten angeknüpft. Eine Lösung der so modifizierten Proteine wurde gefriergetrocknet.

Das erhaltene trockene Pulver ließ sich aufschmelzen zu einer transparenten, zähen roten Flüssigkeit, die erst bei Abkühlen auf -50 °C wieder erstarrte. Im Temperaturbereich zwischen 30 und 37 °C liegt das modifizierte Protein als Flüssigkristall vor, d. h. die Moleküle sind zwar eine mehr oder weniger einheitlich orientiert, aber nicht (oder nur teilweise) wie in einem festen Kristall in einem dreidimensionalen Gitter angeordnet. Bei höheren Temperaturen verhält sich das modifizierte Protein wie eine normale Flüssigkeit. Erst oberhalb von 400 °C zersetzt es sich.

Wie funktioniert die Verflüssigung? Die Tensid-Ketten auf der Oberfläche des Ferritins halten die Proteinkügelchen auf Abstand und schirmen ihre Oberfläche ab. Dadurch kommen die elektrostatischen Anziehungskräfte zwischen polaren Molekülgruppen benachbarter Kügelchen nicht mehr zum Tragen, die sonst dafür sorgen, dass die Proteine als Feststoff zusammengehalten werden. Was die Kügelchen nun zusammen hält, sind Anziehungskräfte zwischen den Kohlenwasserstoffenden der Tensid-Ketten. Diese Kräfte reichen nur noch für einen Zusammenhalt als Flüssigkeit aus. Zwischen 30 und 37 °C richten sich die Tensid-Ketten in einer geordneten Weise aus, die Substanz zeigt flüssigkristalline Eigenschaften.

„Das sind spannende Resultate mit einer grundlegenden Bedeutung für das Verständnis von Flüssigkeiten, die aus nanostrukturierten Komponenten bestehen,“ sagt Mann. „Außerdem könnte dies ein möglicher Weg sein, biomolekulare Stoffe in einem neuartigen Zustand herzustellen. Eine Reihe interessanter Anwendungen sind denkbar, beispielsweise für die Biomedizin und die Sensorik.“

Angewandte Chemie: Presseinfo 31/2009

Autor: Stephen Mann, University of Bristol (UK), http://www.chm.bris.ac.uk/inorg/mann/webpage.htm

Angewandte Chemie 2009, 121, No. 34, 6360-6364, doi: 10.1002/ange.200903100

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer