Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geruchsforschung im Windtunnel

12.04.2010
Feierliche Eröffnung der Windtunnelanlage des Max-Planck-Instituts für chemische Ökologie in den Labors der Carl Zeiss AG Jena

Das Max-Planck-Institut für chemische Ökologie wird am 15. April 2010 um 11:00 Uhr eine der modernsten technischen Anlagen zur Untersuchung geruchsgesteuerten Verhaltens von Insekten offiziell in Betrieb nehmen. Die eigens dafür gebauten Windtunnel wurden jetzt in Räumen der Carl Zeiss AG an der Carl-Zeiss-Promenade untergebracht.

Die Arbeiten für den Erweiterungsbau des Max-Planck-Instituts, in dem zukünftig die Windtunnel installiert werden, beginnen im Juli 2010.

Wir laden Sie hiermit sehr herzlich zu einem Pressegespräch mit Fototermin (inklusive Getränken und Imbiss) ein

am Donnerstag, den 15. April 2010, von 11:00 bis ca. 12:30 Uhr in die

Carl Zeiss AG
Raum 6627
Carl-Zeiss-Promenade 10
07745 Jena
Anders als Windtunnel, die man beispielsweise zur Bestimmung des Windwiderstands aus der Autoindustrie kennt, nutzt die Forschergruppe um Prof. Dr. Bill Hansson und Dr. Markus Knaden die Tunnel zur Untersuchung des Geruchsinnes von Insekten: Wenn eine hungrige Fliege Futter riecht, fliegt sie gegen den Wind, um die Duftquelle anzusteuern. Sobald sie den Geruch nicht mehr wahrnimmt, fliegt sie im Zick-Zack-Kurs quer zum Wind, bis sie erneut auf die Duftfahne trifft, der sie dann wieder gegen den Wind folgt. Der Windtunnel gibt den Forschern die Möglichkeit, den Wind und die Düfte genau zu kontrollieren und dadurch das Verhalten beispielsweise von Mücken, Motten, Schmetterlingen und Fliegen genau zu studieren. Ein Anwendungsbeispiel ist die biologische Schädlingsbekämpfung, bei der Sexual-Lockstoffe, so genannte Pheromone, eingesetzt werden, um die männlichen Motten in Fallen zu locken und dadurch die Vermehrung der Schädlinge stark zu verringern. Die Wirksamkeit derartiger Lockstoffe kann in den neuen Windtunnelanlagen optimal getestet werden.

Klimatechnik

Die neue Anlage verfügt zur Zeit über zwei Windtunnel, wobei im größeren überwiegend große Motten und Schmetterlinge, im kleineren hauptsächlich Fruchtfliegen getestet werden. Die Tunnel sind an eine Klimaanlage angeschlossen. Bei hohen Windgeschwindigkeiten stellt die Klimaanlage pro Sekunde etwa 800 Liter vollklimatisierte Luft mit einer Temperatur von 15-30°C und einer Luftfeuchtigkeit von 20-90% zur Verfügung, sodass die Wissenschaftler mit Insekten aus nahezu allen Klimazonen arbeiten können - dies kommt beispielsweise auch der Malaria-Forschung zugute.

Frisch angesaugte und aufbereitete Luft sorgt dafür, dass keine Probleme durch Verschmutzung auftreten. Bisherige Systeme haben nämlich in einem geschlossenen Kreislauf die aus dem Windtunnel entströmende Luft gesammelt, gereinigt und erneut in den Tunnel geblasen. Dabei kam es immer wieder zu dem Problem, dass Motten sensibel auch auf feinste Mengen von Sexual-Lockstoffen reagiert haben, die bei der Wiederaufbereitung der Luft nicht vollständig entfernt werden konnten. Mit dem neuen, modernen System konnte nun zum ersten Mal das Frischluft-Prinzip realisiert werden, bei dem Luft, die einmal mit Duftstoffen in Kontakt war, nicht unbemerkt ins Experiment zurückgelangt und Versuchsergebnisse verfälscht.

Leuchtdioden (LEDs) statt herkömmlicher Beleuchtung

Eine weitere technische Neuerung ist der Einsatz von Licht mittels Leuchtdioden (LEDs). Die Klimakammern sind mit dicht besetzten LED-Lichtdecken ausgestattet, die die Lichtintensität eines sonnigen Sommertages erreichen können: bis zu 80000 Lux. Zusätzlich liefert die Beleuchtung alle Farben des Sonnenlichtes: von UV- bis Rotlicht. Bislang in der biologischen Forschung verwendete Leuchtstoffröhren ("Neonröhren") emittieren je nach Fabrikat nur Licht weniger bestimmter Wellenlängen, die für den Menschen zwar sichtbar sind, von denen man aber nicht immer weiß, ob sie von Insekten wahrgenommen werden.

Neben dem sonnenähnlichen Licht liegt ein weiterer großer Vorteil der LED-Beleuchtung auch in deren Wasserkühlsystem. Während herkömmlich beleuchtete Klimakammern aufgrund der starken Luftkühlung meist unangenehm laut sind, läuft die neue Anlage im "Flüstermodus". Das ist nicht nur für die Biologen, die den ganzen Tag dort arbeiten, angenehmer, sondern bedeutet auch einen Mehrwert für die Experimente, da viele der Insekten, die in den Experimenten zum Einsatz kommen, über eine ausgeprägte akustische Wahrnehmung verfügen und nicht mehr im Lärm getestet werden müssen.

Weitere Informationen und Anmeldung:

Angela Overmeyer M.A.
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für chemische Ökologie
Tel. +49 3641 57-2110
Mobil: +49 160 99173134
overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik