Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wir Geräusche unterscheiden lernen - BMBF fördert neues Forschungsprogramm an der LMU

27.07.2009
Der Mensch kommt nicht als "fertiges" Wesen auf die Welt, wir müssen uns viele Fähigkeiten erst aneignen. Auch die Sinnesverarbeitung muss gelernt werden, denn nach unserer Geburt können wir zunächst weder perfekt Hören noch Sehen.

Dies liegt im Wesentlichen auch daran, dass unser Gehirn die Verarbeitung der Sinnesreize noch unzureichend beherrscht. Erst mit der Zeit lernen wir, verschiedene Reize auseinanderzuhalten, was sehr wichtig ist, damit wir uns in unserer Umwelt zurechtfinden.

"Beispielsweise gibt es Studien, die zeigen, dass die Fähigkeit, Schall-Stimuli zu unterscheiden und kategorisieren zu lernen bei Kindern stark mit deren sprachlicher Entwicklung korreliert", sagt Christian Leibold. Der Professor für Computational Neuroscience am Biozentrum koordiniert den an der LMU neu eingerichteten Bernstein Fokus "Plastizität zeitlicher Aspekte Neuronaler Aktivität". Das Forschungsvorhaben ist auf fünf Jahre angelegt und wird im Rahmen der Initiative "Bernstein Fokus: Neuronale Grundlagen des Lernens" des Bundesministeriums für Bildung und Forschung (BMBF) mit etwa einer Million Euro gefördert.

Der neue Bernstein Fokus ist Teil des bundesweiten Bernstein Netzwerks Computational Neuroscience, dem auch das Münchner "Bernstein Zentrum für Computational Neuroscience" angehört. Neben dem Koordinator Christian Leibold sind auch die Neurobiologen Professor Benedikt Grothe und Dr. Felix Felmy am Bernstein Fokus beteiligt.

Jede Wahrnehmung hinterlässt Spuren im Gehirn - das ist die Grundlage dafür, dass wir Sehen und Hören lernen. Licht und Schall werden von den Sinnesorganen in Nervensignale übersetzt, die im Gehirn von Nervenzelle zu Nervenzelle weitergegeben werden. Die Verknüpfungen zwischen den Nervenzellen verändern sich dabei - die Wahrnehmung prägt sich ins Gehirn. Aber wie führen solche Veränderungen dazu, dass wir anschließend besser hören? Mit dieser Frage befasst sich der neue Bernstein Fokus an der LMU.

Am Beispiel der akustischen Wahrnehmung von Wüstenrennmäusen wollen die Wissenschaftler erforschen, wie die Tiere zeitliche Stimulus-Eigenschaften von Geräuschen unterscheiden lernen. Sie untersuchen dazu das auditorische Mittelhirn, eine Hirnstruktur, in der alle akustische Information repräsentiert ist. Wie sind die Zellen des Mittelhirns miteinander verschaltet, wie ändert sich ihre Aktivität beim Lernen? Alle akustische Information, die wir über unsere Umwelt erhalten, ist in dem räumlich-zeitlichen Muster elektrischer Impulse von Gruppen von Nervenzellen enthalten. Welche Aspekte dieses Musters verändern sich, wenn die Wüstenrennmaus lernt, Geräusche zu unterscheiden? Im Bernstein Fokus arbeiten Theoretiker und Experimentatoren zusammen. Die Ergebnisse der Experimente werden mithilfe rechnergestützter Methoden analysiert. Computermodelle helfen dabei, die Parameter zu identifizieren, die für die Unterscheidung von Geräuschen wichtig sind und Hypothesen darüber aufzustellen, wie dieses Differenzierungslernen erfolgt.

Ansprechpartner:
Prof. Dr. Christian Leibold
Abteilung Biologie II- Neurobiologie
Großhadernerstr. 2
82152 Planegg - Martinsried
Tel.: 089 / 2180 - 74309
E-Mail: leibold@bio.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.bio.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie