Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genomsequenz gibt Einblicke in die Entstehung des Lebens

04.04.2012
Überlebenskünstler wie das Bakterium Acetobakterium woodii sind beliebte Modellorganismen für die Evolution des Essigsäure-Stoffwechsels.
In der Ur-Atmosphäre aus Wasserstoff und Kohlendioxid lernten sie aus der Synthese von Essigsäure Energie zu gewinnen. Die Genom-Analyse des Bakteriums offenbart nun den ausgeklügelten Stoffwechselweg, der zwar wenig, aber doch genug Energie zum Überleben lieferte.

Im Anfang mag die Erde wüst ausgesehen haben, aber leer war sie nicht. In der an Kohlendioxid (CO2) und Wasserstoff reichen Ur-Atmosphäre lernten Bakterien, Energie zu gewinnen, indem sie die beiden Gase zu Essigsäure verstoffwechselten. Davon zeugen heute noch Überlebenskünstler unter extremen Bedingungen wie Acetobacterium woodii, ein beliebter Modellorganismus, wenn es um die Evolution der zellulären Bioenergetik geht. Der Frankfurter Mikrobiologe Prof. Volker Müller hat nun zusammen mit Kollegen aus Göttingen, Marburg und Greifswald das Genom von A. woodii entschlüsselt und die Blaupause des Lebens offengelegt.

„Für Mikrobiologen ist A. woodii ist eine wahre Schatztruhe, in der wir immer wieder neue biochemische Prinzipien entdecken“, erklärt Müller. Was ihn uns seine Kollegen besonders interessiert: Wie synthetisieren acetogene Bakterien wie A. woodii die zelluläre Energiewährung ATP? Den ersten Teil des Rätsels entschlüsselte seine Arbeitsgruppe vor zwei Jahren, als sie ein neues Kraftwerk (Rnf-Komplex) in diesen Bakterien fand. Es wird mit Elektronen aus einem reduzierten Eisen-Schwefel-Protein (Ferredoxin) „gefüttert“. Durch die Genomanalyse wollten Müller und seine Kollegen herausfinden, ob es weitere Kraftwerke gibt und woher das reduzierte Ferredoxin stammt.

Wie die Forscher in der aktuellen Ausgabe von „PLoS ONE“ berichten, war ihr erster überraschender Befund, dass A. woodii tatsächlich Energie nur über den Rnf-Komplex konserviert. Das geschieht, indem durch den Transport von Natrium-Ionen eine elektrische Spannung über der Membran aufgebaut wird, so dass eine ATP-erzeugende Maschine, die ATP-Synthase, angetrieben wird. Man würde erwarten, dass der Stoffwechselsweg darauf ausgerichtet ist, möglichst viel reduziertes Ferredoxin zu erzeugen, um dadurch auch die Ausbeute an ATP zu erhöhen. Thermodynamisch ist diese Reaktion mit Wasserstoff oder NADH2 als Reduktionsmittel aber ungünstig und daher höchst unwahrscheinlich. Die Analyse des Genoms löste nun das Rätsel: A. woodii enthält Gene, die für lösliche Wasserstoff-aktivierende Enzyme kodieren. Sie überwinden die Energiebarriere wahrscheinlich über den Prozeß der sogenannten „Elektronen-Bifurkation“. Dazu wird ein Elektron aus dem Wasserstoff zunächst energetisch „bergab“ auf einen Akzeptor (NAD+) übertragen. Die dabei freiwerdende Energie wird genutzt, um ein weiteres Elektron „bergauf“ auf Ferredoxin zu übertragen, ähnlich wie bei einem Wasserrad.

„Wir konnten zum ersten Mal zeigen, wie in diesem Stoffwechselweg Energie konserviert wird: Mit Ferredoxin als zentralem Spieler, das von Elektronen-bifurkierenden löslichen Enzymen reduziert und durch den Rnf-Komplex oxidiert wird. Natriumionen sind das Salz in dieser Suppe und essentiell für die ATP-Synthese“, erklärt Müller das zentrale Ergebnis seiner Arbeit. Die bei der CO2-Reduktion zu Essigsäure freiwerdende Energie ist extrem gering und A. woodii ein exzellentes Model für Leben unter extremer Energielimitierung. „Unsere Analysen haben ergeben, dass pro Mol gebildetem Acetat nicht mehr als 0.75 Mol ATP gebildet werden. Dies ist nur circa 2 Prozent dessen, was aerobe Bakterien oder Mitochondrien produzieren“, rechnet Müller vor. Das ist wenig, aber ausreichend für einen ersten Prozeß der Energiekonservierung auf unserem Planeten.

Publikation: Poehlein, A., Schmidt, S., Kaster, A.-K., Goenrich, M., Vollmers, J., Thürmer, A., Bertsch, J., Schuchmann, K., Voigt, B., Hecker, M., Daniel, R., Thauer, R.K., Gottschalk, G., Müller, V. (2012). An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis.

PLoS ONE, http://dx.plos.org/10.1371/journal.pone.0033439


Informationen: Prof. Volker Müller, Molekulare Mikrobiologie und Bioenergetik, Campus Riedberg, Tel.: (069) 798-29507; VMueller@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie