Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genomforschung für neue Energiebäume

10.04.2013
Genom des Pfirsichbaumes in hoher Auflösung sequenziert
Pappeln und Weiden sind hervorragende Biomasse-Produzenten, da sie zu den schnell wachsenden Bäumen zählen. Bei deren Züchtung könnte nun das Genom des nah verwandten Pfirsichbaumes helfen.

Die Rosengewächse (Rosaceae) sind eine Pflanzenfamilie der Kerneudikotyledonen, die sich weitgehend durch fünfzählige Blütenhüllen auszeichnen. Neben den namensgebenden Rosen (Rosa) gehören auch viele bekannte Obstarten wie Apfel, Birne, Brombeere, Himbeere, sowie das Steinobst mit Kirsche, Zwetschge, Pflaume und Mandel zu dieser Familie. Rosengewächse sind weltweit verbreitet, kommt aber hauptsächlich auf der Nordhalbkugel vor.

Kleine Genome, äußerst verschiedene Erscheinungsbilder

Die Genome der Rosengewächse stellen eines der besten Systeme dar, mit denen Wissenschaftler die Evolution von Genomen untersuchen können. Denn die diploiden Vertreter dieser Familie (Erdbeere, Rose, Himbeere und Pfirsich) haben sehr kleine Genome von je etwa 200 bis 300 Megabasenpaare (Mb). Trotzdem unterscheiden sie sich wesentlich in ihrem Wachstumsverhalten. Um die Zusammenhänge von Genom und Gestalt der Pflanzen besser verstehen zu können, sind Forscher auf die Kenntnis einer Referenz-Genomsequenz angewiesen, mit der sie die anderen vergleichen können.

Genau diese Referenzgenomsequenz haben Wissenschaftler nun geschaffen, indem sie das Genom des Pfirsichbaumes in hoher Qualität sequenziert haben. Das kann nun nicht nur für Evolutionsstudien herangezogen werden, sondern, so die Vermutung der Forscher, nützt auch der Biomasseproduktion.

Die Verwandtschaft von Pappeln und Pfirsichbäumen

Pappeln und Weiden gehören zu den schnell wachsenden Bäumen, die sich hervorragend zur Gewinnung von Bioenergie und Biokraftstoffen eignen. Sie werden zu Testzwecken und in begrenztem Umfang bereits kommerziell in sog. Kurzumtriebsplantagen angebaut. Dort werden schnell wachsende Bäume oder Sträucher mit dem Ziel angebaut, innerhalb kurzer Umtriebszeiten Holz als nachwachsenden Rohstoff zu produzieren. Geschieht dies ausschließlich für die Energieerzeugung, wird auch von Energiewald gesprochen.

Aus der Cellulose von Pappeln und Weiden können Alkohol und Treibstoffe mit höherer Energiedichte gewonnen werden. Aber auch die stoffliche-chemische Nutzung des Rohstoffs rückt immer stärker in das Blickfeld. Das Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP in Leuna widmet sich genau dieser Aufgabe. Um diese schnell wachsenden Bäume jedoch kultiviert anbauen zu können, müssen Züchter über die Physiologie und die Genetik der Bäume genau Bescheid wissen. Hinweise darauf suchten Wissenschaftler nun im Genom des lang kultivierten Pfirsichbaums.

Was ein Pfirsichbaum mit einer Pappel gemeinsam hat, scheint auf den ersten Blick nicht offensichtlich. In der Botanik gehören beide Bäume jedoch zu der Gruppe der Rosenähnlichen (Rosiden) und sind so genetisch miteinander verwandt. Die Genomgröße des Pfirsichbaumes eignet sich hervorragend als Modell für die Untersuchung von Genen, die in verwandten Genomen wie der Pappel vorkommen. Mit den daraus gewonnenen Erkenntnissen lassen sich Methoden entwickeln, wie man mehr Biomasse für die Herstellung von Treibstoffen aus diesen Pflanzen gewinnen kann.

"Die enge Verwandtschaft von Pfirsichbäumen und Pappeln wird klar, wenn man ihre DNA-Sequenzen miteinander vergleicht“, so Jeremy Schmutz, Leiter des Pflanzenforschungsprogramms am U.S. Department of Energy Joint Genome Institute. In ihrer aktuellen Studie haben die Wissenschaftler die Sequenz des 265 Mb umfassenden Genoms des Pfirsichbaumes (Prunus persica) veröffentlicht.

Von China bis Mitteleuropa – am liebsten warm

Ursprünglich stammt der Pfirsichbaum aus China, wo er bereits seit 2000 Jahren kultiviert wird. Von dort gelangten die süßen Früchte über Persien nach Griechenland und dank der Römer bis nach Mitteleuropa. Laut Daten der Food and Agriculture Organisation (FAO) wurden in Deutschland im Jahr 2011 862 Tonnen Pfirsiche und Nektarinen produziert. Damit bildet Deutschland das Schlusslicht unter den europäischen Pfirsich- und Nektarinenlieferanten. Dies liegt sicher auch mit an der begrenzten Anbaufläche für Pfirsiche in Deutschland. Denn das Steinobst mag es gerne warm und wird vornehmlich in Weinbaugebieten angepflanzt.

Pfirsiche können, wie andere Obstarten, zu einer gesunden Ernährung beitragen. Sie enthalten die Mineralstoffe Kalzium, Kalium, Phosphor und Eisen sowie das Provitamin A und die Vitamine B1, B2 und Niazin. Pfirsichen bzw. Pfirsichnektar wird eine harntreibende und entgiftende Wirkung zugeschrieben.

Lignin: Wertvoller Rohstoff für Biokraftstoffe

„Wenn wir die Genomsequenz des Pfirsichbaumes kennen, können wir diese nicht nur dazu verwenden, die Widerstandsfähigkeit des Pfirsichbaums durch gezielte Züchtung zu verbessern. Wir verstehen dadurch auch die Biologie aller Bäume besser“, schreiben die Wissenschaftler in ihrer Veröffentlichung.

In ihrer aktuellen Studie verglichen sie 141 Genfamilien des Pfirsichbaums mit denen von sechs weiteren, gänzlich sequenzierten Pflanzenarten, um den genetischen Hintergrund für bestimmte metabolische Prozesse aufzuspüren. Dazu gehört auch jener, mit der eine Pflanze Lignin produziert.

Lignin ist eine Art molekularer Klebstoff, der die Pflanzenzellen zusammen hält. Bei der Biomasseproduktion ist dieser Klebstoff eine der Haupthürden, wenn es darum geht, Biomasse und Treibstoff umzuwandeln, denn es muss erst aufwendig herausgelöst werden. Bei der industriellen Gewinnung von Zellstoff beispielsweise fällt Lignin als Abfallprodukt an. Mit verschiedenen Chemikalien (z.B. Natronlauge, Natriumsulfid) wird dabei Lignin von der Zellulose getrennt. Lignin wird anschließend häufig als Schwarzlauge verbrannt und somit zur Erzeugung von Energie genutzt.

Veränderter Genort für mehr Biomasse

Ein weiterer interessanter Genort für die Wissenschafter ist der sog. Immergrün-Lokus im Genom des Pfirsichbaumes. Dieser verlängert die Wachstumsperiode“, so Daniel Rokhsar, einer der Studienautoren. Dieser Genort könnte theoretisch in Pappeln so verändert werden, dass die Bäume mehr Biomasse produzieren“, erklärt er die Möglichkeit, das neue, aus den Grundlagenstudien gewonnene Wissen in praktisch anwendbaren, industriellen Nutzen umzuwandeln.
Quelle:
The International Peach Genome Initiative et al. (2013): The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. In: Nature Genetics, (online: 24. März 2013), doi:10.1038/ng.2586.

The International Peach Genome Initiative et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8820

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten