Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genome-Scale Study ID’s Hundreds of Drug Targets for Huntington’s

03.12.2012
Scientists searching for ways to develop treatments for Huntington’s disease (HD) just got a roadmap that could dramatically speed their discovery process.

Researchers at the Buck Institute have used RNA interference (RNAi) technology to identify hundreds of “druggable” molecular targets linked to the toxicity associated with the devastating, ultimately fatal disease.

The results from this unprecedented genome-scale screen in a human cell model of HD are published in the November 29, 2012 edition of PLoS Genetics. The work was is a collaboration between Buck Institute faculty members Robert E. Hughes, Ph.D., Sean Mooney, Ph.D., Lisa Ellerby, Ph.D. and Juan Botas, Ph.D. at the Baylor College of Medicine.

HD is a devastating and incurable progressive neurodegenerative genetic disorder that affects motor coordination and leads to severe physical and cognitive decline. Currently, there are about 30,000 people in North America diagnosed with HD and another 150,000 people at risk for developing the disease. The disease pathology stems from a mutation in the huntingtin gene (HTT), resulting in the accumulation of a toxic protein leading to neuronal cell death and systemic dysfunction. Buck Scientists screened more than 7,800 genes pre-selected as potential drug targets to identify modifiers of HD toxicity in human cells, using technology that silences specific genes prior to analysis.

Lead author Robert Hughes said that among the diverse range of modifiers identified, this study showed that RRAS, a gene involved in cell motility and neuronal development, is a potent modulator of HD toxicity in multiple HD models. “Our data indicates that the pathogenic effects of the HTT mutation on this pathway can be corrected at multiple intervention points and that pharmacological manipulation of RRAS signaling may confer therapeutic benefit in HD,” Hughes said. Follow up work on the RRAS pathway is now underway in the Hughes lab and in the lab of Buck faculty member Lisa M. Ellerby, PhD.

Hughes said many molecular hits identified in the screening were validated in human cell, mouse cell and fruit fly models of HD – and that all the data from the study will be available to the public. “Our hope is that HD researchers will look at these targets and find modifiers relevant to the areas they already work on,” said Hughes. “Ideally, pharmaceutical companies already working on some these pathways could build on their current knowledge and expertise by focusing their attention on the challenge to develop therapies for HD.”

Citation: “Miller JP, Yates BE, Al-Ramahi I, Berman AE, Sanhueza M, et al. (2012) A Genome-Scale RNA–Interference Screen Identifies RRAS Signaling as a Pathologic Feature of Huntington’s Disease. PLoS Genet 8(11): e1003042. doi:10.1371/journal.pgen.1003042”. Once the paper has been published, it will be accessible at http://www.plosgenetics.org/doi/pgen.1003042.

Contributors to the work:
Buck Institute researchers involved in the work include John Miller, Bridget E. Yates, Ari E. Berman, Francesco DeGiacomo, Cameron Torcassi, Jennifer Holcomb, Juliette Gafni, and Buck faculty members Robert E. Hughes, Lisa M. Ellerby and Sean D. Mooney. Other contributors include Ismael Al-Ramahi, Mario Sanhueza, Eugene Kim, Maria de Haro, and Juan Botas, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX. This work was supported by NIH NS040251, NIH NS055247, CHDI Inc., NIH NS042179, CHDI A-1979, NIH R01 LM009722 and NIH U54-HG004028, NIH T32 training grant AG000266, Hereditary Disease Foundation, John J. Wasmuth Postdoctoral Fellowship and Nathan Shock Center Grant P30AG025708.
About the Buck Institute for Research on Aging
The Buck Institute is the U.S.’s first and foremost independent research organization devoted to Geroscience – focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending “Healthspan”, the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer’s and Parkinson’s, cancer, cardiovascular disease, osteoporosis, macular degeneration, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics, stem cell technology and bioinformatics. For more information: www.thebuck.org

Kris Rebillot | Newswise Science News
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie