Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genomanalysen decken den endosymbiotischen Ursprung komplexen Lebens auf

20.08.2015

Als Teil eines internationalen Forscherteams haben Biologen der HHU in diesem Jahr bereits zum zweiten Mal in der renommierten Fachzeitschrift ‚Nature’ veröffentlicht. Thema des Aufsatzes sind symbiotische Assoziationen zwischen bakteriellen Organismen, die zum Ursprung der Eukaryoten führten. Eukaryoten sind große Zellen mit DNA, die in einen Zellkern verpackt ist.

„Prokaryoten und Eukaryoten leben seit mehr als 1,5 Milliarden Jahre nebeneinander. Gleichzeitig jedoch leben sie effektiv in zwei verschiedenen und genetisch getrennten Welten“, erklärt Prof. Dr. William Martin vom Institut für Molekulare Evolution der Heinrich-Heine-Universität.


Die Abbildung zeigt, zum Vergleich der Größe und der Zellkomplexität, den einzelligen Eukaryoten Tetrahymena (Mitte) und den Prokaryoten Escherichia coli (mit Pfeilen markiert). Fotos: Sven Gould (Fluoreszenz-Aufnhamen)

„Die einzige nennenswerte Genvermischung zwischen Prokaryoten und Eukaryoten fand bei den Ursprüngen der Chloroplasten und Mitochondrien (und somit der Eukaryoten selbst) statt. Kurz gesagt: Endosymbiose schuf den Unterschied zwischen Prokaryoten und Eukaryoten".

Die Untersuchungen der Arbeitsgruppe um Prof. Dr. Martin zeigen, dass es keine Hinweise auf einen nachweisbaren Einfluss eines andauernden horizontalen Austauschs von Erbinformationen, des sogenannten horizontalen Gentransfers (HGT) auf die Genevolution der Eukaryoten gibt.

Bei Eukaryoten traten lediglich zwei Vorfälle von Genzugewinnen auf, welche die eukaryotische Phylogenie und die Verteilung von bakteriellen Genen in Eukaryoten prägen: die Entstehung der Mitochondrien – die Kraftwerke der eukaryotischen Zellen – und die Entstehung der Chloroplasten – die Chlorophyll-beinhaltenden Solarfelder pflanzlicher Zellen. Während Mikroben neue Genfamilien durch HGT erlangen, erlangen Eukaryoten sie durch Gen- und Genomduplikationen.

“Eukaryoten (große Zellen mit DNA in einen Zellkern verpackt) sind Organismen, die eine monotone Zusammensetzung von Kohlenstoff- und Energiestoffwechseln haben, die jedoch in mehreren Millionen verschiedener Formen und Größen verpackt sind. Prokaryoten hingegen sind Organismen, die Millionen verschiedener Arten von Kohlenstoff- und Energiestoffwechseln beinhalten, aber immer in der gleichen, monotonen Form und Größe verpackt”, sagte der Projektleiter. „Wir fragten uns, wie es zu diesen Unterschieden gekommen ist, und was uns Genomsequenzen darüber erzählen können.“

Die Wissenschaftler stellten fest, dass der Genfluss in den beiden Systemen sehr unterschiedlich ist: In Prokaryoten, entwickelten sich Genome durch umfangreiche Gen-Expansionen, ohne Rücksicht auf Artengrenzen. Dies wird als horizontaler Gentransfer (kurz HGT) bezeichnet und ist der Grund für die Vielfalt der prokaryotischen Stoffwechselsysteme.

Die große Überraschung der Studie war, dass sich Eukaryoten nicht an dieser Art des kontinuierlichen Genaustauschs beteiligen. Falls sie es doch mal tun sollten, dann deutet es auf ein sehr, sehr wichtiges Ereignis hin, nämlich dem Ursprung der Organellen.

Eukaryoten unterscheiden sich von Prokaryoten in vielerlei Hinsicht. Nichts ist jedoch wichtiger als der Umstand, dass Eukaryoten innerhalb ihrer Zellen Organellen beherbergen, welche Relikte endosymbiotischer Bakterien sind. Alle Eukaryoten besitzen Mitochondrien.

In den letzten Jahren haben Wissenschaftler gelernt, dass der Ursprung der Mitochondrien zum Ursprung der eukaryotischen Abstammungslinie selbst führte, ein Ereignis, das vielleicht vor 1.600.000.000 Jahren aufgetreten ist. In der Veröffentlichung in ‚Nature‘ konnte nun gezeigt werden, dass der Ursprung der Mitochondrien in den Eukaryoten einen massiven Einstrom von Genen aus dem Endosymbionten in das Erbgut der Wirtszelle zur Folge hatte.

Später, beim Ursprung der Pflanzen, spielte sich die gleiche Geschichte noch einmal ab. Auch Chloroplasten-Organellen, welche die Pflanzen grün machen und die Photosynthese (die durch Licht angetriebene Umwandlung von Kohlendioxid in Zucker und Energie) betreiben – entstanden durch Endosymbiose. Auch bei der Geburtsstunde des Pflanzenreichs gab es einen weiteren massiven Zustrom von Genen aus dem Chloroplasten-Vorfahren (ein Cyanobakterium) in das Ergbut des eukaryotischen Wirts.

Folglich sind Eukaryoten Chimären, Hybriden verschiedener Arten von Zellen, die durch Endosymbiose und Gentransfer zu einem großen Ganzen fusionierten. Darüber hinaus zeigen die neue Erkenntnisse, dass nach der endosymbiotischen Fusion ein langsamer Prozess des Genverlusts einsetzte. Jedoch haben unterschiedliche evolutionäre Abstammungslinien jeweils andere Gene verloren. Dieser Prozess wird als "differentieller Genverlust" bezeichnet, und er führt zu sehr spärlichen Verteilungen von Genen innerhalb verschiedener Abstammungslinien.

"Es war wie beim Schach", sagt Prof. Dr. James McInerney von der National University of Ireland, "die Zellen begannen mit zwei vollständigen Sätzen von Genen, einem aus jedem Symbiosepartner, beide an den jeweiligen Enden des Brettes aufgereiht." Aber im Laufe der Evolution wurden diese beiden Gensätze einer nach dem anderen reduziert, so dass am Ende des Spiels so gut wie nichts übrig blieb. Mit dem, was übrig blieb, versuchen wir nun zu rekonstruieren, wie die einzelnen Spielzüge verliefen.

Wenn nun also Chloroplasten und Mitochondrien Endosymbionten sind, was war der Wirt? „Ein Archaeum“, sagt Dr. Giddy Landan, leitender Bioinformatiker an der Christian-Albrechts-Universität zu Kiel, "wir wissen nur nicht welches." Die Studie nutzte einen statistischen Ansatz zur Aufdeckung der Ursprünge eukaryotischer Gene. Die neue Studie hebt sich von früheren Arbeiten ab, indem sie nicht nur einzelne Gen-Stammbäume betrachtet, sondern auch ganze Gen-Verteilungen.

Die Forscher führten eine gewaltige Menge an Berechnungen durch, um die frühe Geschichte der Eukaryoten und Pflanzenwelt zu rekonstruieren. "Es war eine immense Rechenleistung" sagen die beiden führenden Autoren Chuan Ku und Dr. Shijulal Nelson-Sathi unisono. „Der Hochleistungs-Rechencluster „HILBERT“ der HHU Düsseldorf mit mehreren Terabyte Arbeitsspeicher hat uns dabei sehr geholfen.“

Die zweite wichtige Erkenntnis erklärt Prof. Martin: „Prokaryoten tauschen Gene mit einer sehr hohen Rate untereinander aus – manchmal innerhalb der gleichen Art, manchmal mit einer anderen Art. Es passiert andauernd und es scheint wenig, wenn überhaupt, Partnerwahl zu geben. Aber für Eukaryoten ergibt sich ein völlig anderes Bild. Eukaryoten paaren sich nur mit Individuen der gelichen Art. Das Mischen von prokaryotischen und eukaryotischen Genen passiert jedoch viel seltener.

Für künftige Forschung bleibt die Frage, warum Eukaryoten sich von dieser Art des Genaustauschs gelöst haben, wo hingegen Prokaryoten ihn ausgiebig vollziehen? Zur Erforschung solcher wichtigen Fragen der frühen Zellevolution hat Prof. Martin in diesem Jahr bereits seinen zweiten ERC Advanced Grant erhalten.

Der Europäische Forschungsrat (Eurpean Research Council) zeichnet einige wenige europäische Spitzenforscher mit einer Summe von ca. 2,5 Millionen Euro für fünf Jahre aus, um ihnen besondere Möglichkeiten und Freiheiten im Rahmen der Forschungsförderung zu ermöglichen. Mit dieser Förderung will er weiterhin die Rolle der Symbiose bei der Entstehung der Eukaryoten erforschen.

Quelle:

online: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14963.html

Ku et al. 2015: Endosymbiotic origin and differential loss of eukaryotic genes, doi:10.1038 / nature14963

Dr. Victoria Meinschäfer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie