Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geniales Bauprinzip der Natur

14.02.2012
Internationale Forschergruppe um Wissenschaftler der Universität Konstanz belegt die Existenz von Mesokristallen erstmals in natürlicher Erscheinungsform

Der Konstanzer Chemiker Prof. Dr. Helmut Cölfen hat in Kooperation mit elf weiteren internationalen Wissenschaftlerinnen und Wissenschaftlern die Struktur von Seeigelstacheln analysiert und ein von der Natur seit Jahrmillionen angewandtes Bauprinzip für High-Tech Kompositmaterialien entschlüsselt.

Die Forschungsergebnisse werden nun in „PNAS“ (Proceedings of the National Academy of Sciences), einer von der Akademie der Wissenschaften der Vereinigten Staaten herausgegebenen Fachzeitschrift, veröffentlicht. In dem Artikel wird belegt, dass die Stacheln von Seeigeln aus Mesokristallen aufgebaut sind, über deren Existenz in der Natur bislang nur indirekte Hinweise bekannt wurden. Als Mesokristall beschreibt Helmut Cölfen eine kristalline Form, die aus kleinen parallel ausgerichteten Nanokristallbausteinen besteht, welche sowohl Eigenschaften eines Einkristalls als auch der Nanopartikel hat und bisher für eine Spezies gehalten wurde, die ausschließlich synthetisch zugänglich ist.

Der Professor für physikalische Chemie an der Universität Konstanz und sein Mitarbeiter Dr. Jong Seto haben im Rahmen einer fünfjährigen Forschungsarbeit durch internationale und interdisziplinäre Zusammenarbeit mit Forschern der Universitäten Peking, Bristol, Leeds, Paris-Süd, Potsdam, der Bundesanstalt für Materialforschung Berlin, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung Potsdam und der ESRF (European Synchroton Radiation Facility) Grenoble, die komplexe Struktur des Seeigelstachels untersucht und die Lösung für ein seit einem knappen Jahrhundert umstrittenen Phänomen gefunden.
Die bruchfesten Stacheln des Seeigels bestehen aus Kalk (Kalziumcarbonat), einem als Kristall harten, aber stark brüchigen Material. Während sich Kalk in der Geologie normalerweise als Kalzitkristall ablagert, widerspricht die robuste Erscheinungsform der untersuchten Stacheln den Eigenschaften von Kalzitkristallen, welche an Spaltebenen vielfach und leicht gebrochen werden können. Einerseits ergab die Röntgenanalyse der Stacheln, dass sie aus Kalziteinkristallen bestehen, andererseits konnten bei Bruchexperimenten nicht die typischen Spaltebenen eines Einkristalls gefunden werden, sondern eine raue Bruchfläche, die eher dem Bruch eines Glases oder einer Keramik entspricht.

Durch das von Helmut Cölfen aufgebaute internationale Netzwerk von Einrichtungen, die sich mit der Charakterisierung von Materialien beschäftigen, konnten die Stacheln mit Elektronenmikroskopen, verschiedenen Röntgenanalyseverfahren insbesondere unter Einsatz von Synchrotonstrahlung an zwei verschiedenen Beamlines der ESRF, Kernresonanzspektroskopie, Nano-Analysen und weiteren Verfahren genau untersucht werden. Es zeigte sich, dass das Bauprinzip des Stachels auf der Größenordnung von millionstel Millimetern (Nanometern) einer Mauer entspricht, in der einzelne Bausteine aus kristallinem Kalk (Kalzit) parallel angeordnet und mit einem Mörtel aus ungeordnetem Kalk zusammengeklebt sind. Durch diese Anordnung wird die Energie von Stößen oder Kollisionen in der ungeordneten Masse wie in einer Art Schockabsorber aufgefangen. Dabei bestehen 92 % des Stachels aus Kalzit und 8 % aus dem ungeordneten Kalk. Der ungeordnete Kalk wiederum besteht zu 99,9 % aus Kalk und zu 0,1 % aus Eiweißen. Bei einer Schichtdicke von ein bis zwei milliardstel Metern um die Kalzitnanokristalle sorgt er dafür, dass der Stachel nur schwer zerbricht. Durch die Arbeit der Forscherguppe um Helmut Cölfen wurde die Struktur dieser Mesokristalle erstmals in biologischer Erscheinungsform belegt. Dieses Strukturprinzip löst nun auch den jahrzehntelangen Disput um die Natur der Seeigelstachel – nur als Mesokristall kann der Seeigelstachel sowohl die Eigenschaften der Kalzitnanokristalle als auch der dünnen ungeordneten Kalkschicht haben, die sie umgibt.

Die große innere Oberfläche der natürlichen Mesokristalle lässt sich laut Cölfen als Bauprinzip kopieren und beispielsweise für die künstliche Herstellung von natürlichen, dünnen und bruchfesten Baustoffen nutzen, die sowohl in der Produktion als auch im Abbau ökologisch verträglich sind. „Faszinierend ist, dass die Natur selbst aus solchen eigentlich zerbrechlichen Materialien, durch eine reine Strukturierung der Materialien, Hochleistungswerkstoffe herstellen kann, die der Mensch selbst bisher nicht schaffen kann“, erläutert der Konstanzer Chemiker das weltweite Streben, von Biomineralien zu lernen. Die Forschergruppe von Helmut Cölfen an der Universität Konstanz arbeitet bereits gemeinsam mit zwei großen internationalen Unternehmen an Projekten, die sich der Herstellung von Hochleistungsbeton der Zukunft widmen.

Hinweis an die Redaktionen:
Der gesamte Artikel wird innerhalb dieser Woche unter folgendem Link zur Verfügung stehen: http://www.pnas.org/cgi/doi/10.1073/pnas.1109243109

Kontakt:
Universität Konstanz
Kommunikation und Marketing
78464 Konstanz
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Helmut Cölfen / Dr. Jong Seto
Universität Konstanz
Fachbereich Chemie
78464 Konstanz
Telefon: 07531 / 88-4063 (Cölfen) – 4808 (Seto)
E-Mail: helmut.coelfen@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie