Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetisch bedingte Krankheiten sind ein altes evolutionäres Vermächtnis

16.10.2008
Seit der Evolution der Säugetiere sind kaum neue potenzielle Krankheitsgene hinzugekommen

Tomislav Domazet-Loso und Diethard Tautz vom Max-Planck-Institut für Evolutionsbiologie in Plön haben den Zeitpunkt der Entstehung von zahlreichen Genen, die auch Krankheiten auslösen können, systematisch analysiert. Ihre Untersuchungen belegen erstmals, dass diese Gene in ihrer überwältigenden Mehrheit bereits seit dem Ursprung der ersten Zellen existieren.


Künstlerische Darstellung einer Phylostratigraphie. Bild: Irena Andreic, Ruðer Boškoviæ Institute, Zagreb

Damit ist die Suche nach weiteren Genen, insbesondere solchen, die an Krankheiten mit mehreren genetischen Ursachen beteiligt sind, deutlich erleichtert. Zudem bestätigen die Ergebnisse, dass grundlegende Zusammenhänge über die Funktion von Genen, die Krankheiten auslösen, auch an Modellorganismen gefunden werden können (Molecular Biology and Evolution).

Eine kleine Änderung in der Buchstabenfolge genügt - ein A für ein C - und ein bislang einwandfrei funktionierendes Gen wird zum Krankheitsauslöser. Mit der Entschlüsselung des Humangenoms sind inzwischen Tausende von Genen identifiziert worden die, wenn sie solche Mutationen tragen, beim Menschen zu genetisch bedingten Krankheiten führen können. Die Datenbank "Online Mendelian Inheritance in Man" weist mehr als 4.000 Chromosomenregionen aus, die mit genetischen Erkrankungen in Verbindung gebracht werden. Und für gut die Hälfte dieser Regionen sind die Gene, deren Mutationen für den Ausbruch einer Krankheit beim Menschen verantwortlich sind, identifiziert. Viele dieser Gene finden sich auch in anderen Organismen wie etwa der Fliege Drosophila oder dem Fadenwurm Caenorhabditis.

Die Wissenschaftler Tomislav Domazet-Loso und Diethard Tautz vom Max-Planck-Institut für Evolutionsbiologie in Plön haben diese Gene nun einer genaueren Analyse unterzogen. Ihr Ziel: die Bestimmung des Zeitpunkts ihrer evolutionären Entstehung. Dabei nutzten die Plöner Wissenschaftler eine statistische Methode, die Domazet-Loso am Ruder Boskovic Institute in Zagreb (Kroatien) schon 2007 entwickelt hat, die "Phylostratigraphie". Dieses Verfahren erlaubt es, den Ursprung jedes heute existierenden Gens zu ermitteln. Verwendet werden hierzu die Daten aus komplett entschlüsselten Genomen von Vergleichsorganismen, die den gesamten Stammbaum der Eukaryoten (Lebewesen mit Zellkern und Zellmembran) repräsentieren. Mit Hilfe einer Sequenz-Ähnlichkeitssuche (BLAST) bestimmt man dann den letzten gemeinsamen Vorfahren, in dessen Genom das untersuchte Gen noch entdeckt werden kann. So wird das erste Auftreten des Gens, also sein minimales Alter, genau ermittelt.

"Bei dieser systematischen Altersbestimmung jener Gene, die für bestimmte Krankheiten verantwortlich sind, konnten wir tatsächlich erstmals zeigen, dass sie in einer beeindruckenden Mehrheit bereits seit dem Ursprung der ersten Zellen existieren", erklärt Diethard Tautz. Große Gruppen dieser Gene entstanden während der Evolution der Vielzeller vor mehr als einer Milliarde Jahren sowie zur Zeit der Evolution der Knochenfische vor zirka 400 Millionen Jahren. "Überraschenderweise sind seit der Evolution der Säugetiere kaum neue potenzielle Krankheitsgene hinzugekommen", sagt der Evolutionsbiologe.

Genetisch bedingte Krankheiten betreffen offenbar vor allem evolutionär alte zelluläre Prozesse, die bereits in der Frühphase organischen Lebens entstanden sind. Und das führt zu dem Schluss, dass alle heute lebenden Organismen von ähnlichen genetischen Krankheiten betroffen sein können. "Wir können genetisch bedingte Krankheiten somit letztlich nie vollständig besiegen, da sie Prozesse betreffen, die in der Evolution unveränderbar festgelegt wurden", so der Max-Planck-Forscher. Rätselhaft bleibt, warum gerade die entwicklungsgeschichtlich jungen Gene, wie zum Beispiel jene, die für die Entwicklung der Säugetiere nötig waren, nur selten Krankheiten auslösen, wenn sie Mutationen tragen.

Die Ergebnisse der Plöner Forscher haben praktische Konsequenzen, rechtfertigen sie doch den Einsatz von Modellorganismen in der biomedizinischen Forschung: Da, wie gezeigt, evolutionär alte Prozesse betroffen sind, darf man erwarten, dass selbst bei Fadenwürmern (C. elegans) oder Fliegen (Drosophila), die nicht nah mit dem Menschen verwandt sind, grundlegende Zusammenhänge erforscht werden können, die für entsprechende Therapieansätze beim Menschen genutzt werden können.

Originalveröffentlichung:

Tomislav Domazezt-Lošo und Diethard Tautz
An ancient evolutionary origin of genes associated with human genetic diseases.
Molecular Biology and Evolution, advanced access published on September 26, 2008; doi: 1093/molbev/msn214

Dr. Christina Beck | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE