Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene und Proteine erklären nicht alles

09.11.2009
Neue Tübinger Erkenntnisse verändern die Sicht der klassischen Genetik

Andreas Wachter, seit 2009 Emmy Noether-Forschungsgruppenleiter am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen, untersucht molekulare Regulationsmechanismen in zentralen biologischen Prozessen. Er überträgt neueste Erkenntnisse aus der Forschung an Bakterien erstmals auf Pflanzenzellen und betont die Bedeutung der Ribonukleinsäure (RNA) bei diesen lebenswichtigen Prozessen.

Wachter untersucht die RNA an einem klassischen Mechanismus, dem sogenannten "Spleißen", bei dem bestimmte Abschnitte aus den RNA-Molekülen ausgeschnitten und die Informationen komprimiert werden. Bisher wurde angenommen, dass die komplexe und überlebenswichtige Aufgabe der Regulation des Spleißens nur von speziellen Proteinen geleistet werden kann. Wachter stellt diese klassische Interpretation in Frage: "Eine sehr elegante Lösung wäre es, wenn die RNA den Prozess des Spleißens direkt beeinflussen kann, ohne erst den Umweg über Proteine zu gehen." Als Postdoc erforschte Wachter diesen Prozess des "Alternativen Spleißen" in der auf dem Gebiet sogenannter RNA-Schalter weltweit führenden Arbeitsgruppe von Ronald Breaker an der renommierten Yale University in Connecticut, USA.

RNA-Schalter auch in Pflanzen

Wachter ist einer der ersten, der diese an Bakterien erforschten Mechanismen auf höhere Organismen überträgt und in Pflanzenzellen untersucht. Dabei konnte er bereits zwei neue Klassen von RNA-Schaltern beschreiben. "Die Rolle der RNA für die Lebensprozesse in der Zelle wurde lange Zeit völlig unterschätzt! Es werden vermutlich sehr viel mehr Prozesse als wir bisher ahnen von der RNA selbst gesteuert." Die für eine Erforschung der komplexen Strukturen erforderlichen Techniken hat sich Wachter in Amerika angeeignet und kann diese nun in Tübingen einsetzen. Dabei setzt er auf die Zusammenarbeit mit anderen Arbeitsgruppen am Zentrum für Molekularbiologie der Pflanzen (ZMBP) und dem benachbarten Max-Planck-Institut für Entwicklungsbiologie.

Viele Wissenschaftler betrachten die RNA nur als einen notwendigen Zwischenschritt, um die Erbinformation der DNA aus dem Zellkern zu übersetzen in Proteine, die in der Zelle alle lebenswichtigen Funktionen erfüllen. Viel mehr als eine solche Matrizenfunktion hat man der RNA lange nicht zugetraut, zumal sie mit ihren vier Bausteinen in einem Einzelstrang geradezu primitiv erscheint gegenüber den hochkomplexen und spezialisierten Strukturen, in denen Proteine in der Zelle vorkommen.

Wachter betrachtet die RNA nicht nur in ihrer eindimensionalen Abfolge der Basen auf einem Einzelstrang, sondern untersucht auch deren Struktur in der zweiten und dritten Dimension. Und in dieser räumlichen Betrachtung entpuppt sich der vermeintliche Nachteil der RNA, die im Gegensatz zur Doppelhelix der DNA nur aus einem einzelnen Strang besteht, plötzlich als enormer Vorteil: Die Ausbildung von räumlichen Strukturen ist im Einzelstrang sehr viel ein-facher möglich. Und diese Faltungen der RNA vervielfachen die Möglichkeiten für Interaktionen mit anderen Molekülen - und mit sich selbst.

Durch die Faltung der RNA in dreidimensionale Strukturen wird ein effizienter Regulationsmechanismus in vielen Auf- und Abbauprozessen der Zelle möglich: Die RNA muss nicht auf Proteine warten, sondern kann die Prozesse durch spezielle Faltungen selbst regulieren und über unterschiedliche Strukturen verschiedene Reaktionsabläufe in der Zelle selbst steuern. Wachter sagt für die Zukunft voraus: "Die bisherigen Arbeiten wiesen das enorme Potenzial von RNA in vielen zellulären Prozessen nach. Ich bin mir sicher, dass dieses Potenzial in allen Lebewesen sehr viel stärker genutzt wird, als bisher angenommen."

Entwicklung von Antibiotika

Der Einfluss der RNA-Struktur auf die Steuerung von Prozessen in den Zellen wird weltweit intensiv erforscht, da man neben dem grundlegenden Verständnis biologischer Prozesse auch das große Potential zur Entwicklung neuer Antibiotika erkannt hat: Ein Mechanismus, der so effizient die Regulation von lebenswichtigen Prozessen steuert, kann, so erwarten die Forscher, gezielt verändert und gegen zunehmend resistente Bakterienstämme eingesetzt werden.

Bildmaterial
online zum download unter http://www.zmbp.uni-tuebingen.de, dort weiter unter News.
Über Dr. Andreas Wachter
Andreas Wachter studierte Biologie mit einem Fokus auf Molekularbiologie, Botanik und Ökologie an der Universität Heidelberg. Nach einer Promotion auf dem Gebiet der molekularen Pflanzenwissenschaften in Heidelberg im Jahr 2004 folgten ein dreimonatiges Forschungsprojekt an der Harbin Universität in China sowie zwei Jahre als Postdoc an der Yale Universität, USA. Ab Sommer 2007 führte Wachter seine Forschung am Heidelberger Institut für Pflanzenwissenschaften fort und leitet seit 2009 eine Emmy Noether-Forschungsgruppe zum Thema "Alternatives Spleißen in Pflanzen" am Zentrum für Molekularbiologie der Pflanzen an der Universität Tübingen.

Kontakt:

Dr. Andreas Wachter
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Auf der Morgenstelle 28
72076 Tübingen
Allgemeine Genetik
Tel.: (07071) 29-76149
Fax: (07071) 29-5042
awachter[at]zmbp.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.zmbp.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten