Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene linked to worse outcomes for melanoma

19.02.2013
Scientists at Queen Mary, University of London have identified a gene present in some melanoma which appears to make the tumour cells more resistant to treatment, according to research published today in the Journal of Experimental Medicine.
The scientists discovered that the gene TP63 is unexpectedly expressed in some melanoma and correlates significantly with a worse prognosis. It is hoped this new understanding of what makes some melanoma cells so difficult to kill will help inform the development of new therapies.

Melanoma is a form of skin cancer which usually appears on the body as a new or changing mole. Almost 13,000 people in the UK are diagnosed with melanoma each year. While it is less common than other forms of skin cancer – around five per cent of skin cancers are melanoma – it results in around 75 per cent of skin cancer related deaths (more than 2000 deaths a year in the UK).

The number of cases of melanoma is rising faster than almost any other cancer and one of the main risk factors is ultraviolet light, which comes from the sun or sunbeds. While early-stage melanomas can often be removed by surgery, more advanced melanomas are much harder to treat.

Dr Daniele Bergamaschi, a senior lecturer in cutaneous research at Queen Mary said: "For most patients where the melanoma has spread beyond the skin, there are few effective treatments and overall survival rates for this disease have not changed much over the past 30 years.

"To develop better treatments we need to understand the basic biology underpinning why these cells are so resistant to being killed."

The researchers analysed 156 melanoma tissue samples from 129 individuals for expression of the protein p63 – the protein encoded by the gene TP63. They found that p63 was expressed in more than 50 per cent of the samples (58% of primary metastatic samples, 53% of recurrent samples and 66% of metastatic samples) and correlated significantly with death from melanoma.

Dr Bergamaschi said: "We did not expect to find the TP63 gene expressed in melanoma. It is not usually found in the melanocytes (skin pigment cells), which are the cells from which melanomas develop. However, it appears in some cases this gene is turned on as the tumour forms, and when it does it is linked to a worse prognosis."

The researchers suggest that the TP63 gene, and the subsequent production of the protein p63 in some melanoma, is inhibiting the apoptotic function of the protein p53. One of the main activities mediated by p53 is apoptosis – the process of programmed cell death and one of the main mechanisms by which cancer cells die.

Dr Bergamaschi said: "The apoptotic pathway is often not working in melanoma. However this is not explained by mutations in the TP53 gene, which encodes for the p53 protein, as evidence suggests this is mutated in less than 10 per cent of melanoma.

"This work suggests that in a significant number of cases it is actually the protein p63 which is inhibiting p53's apoptotic function, making some tumours more resistant to treatment. We therefore suggest that p63 should be considered when designing new treatments for melanoma which are focused on re-activating the apoptotic pathway in order to make the cancer cells easier to kill."

Katrina Coutts | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten