Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene unter Kontrolle

24.03.2010
Die Organellen der Fotosynthese - die Chloroplasten - besitzen eigene DNA, Boten-RNA und Ribosomen zur Bildung von Proteinen. Max-Planck-Wissenschaftler haben nun herausgefunden, wie sie die Bildung von Proteinen in den Chloroplasten regulieren können. Mit Hilfe so genannter Riboschalter können sie Gene in den Chloroplasten von Tabakpflanzen an- und abschalten. Solche Riboschalter könnten künftig dabei helfen, Pflanzen als Lieferanten für Medikamente oder Rohstoffe zu nutzen und die biologische Sicherheit gentechnisch veränderter Pflanzen zu verbessern.

Damit aus einem Gen ein Protein gebildet werden kann, muss die DNA zunächst in so genannte Boten-RNA umgeschrieben werden. Diese RNA-Moleküle sind die Bauanleitung, aus der die Proteinfabriken der Zelle, die Ribosomen, den Aufbau eines Proteins ableiten. Vor wenigen Jahren wurden in Bakterienzellen Abschnitte auf einigen Boten-RNAs entdeckt, an die Stoffwechselprodukte - so genannte Metabolite - binden können.


Tabakzellen im Fluoreszenzmikroskop: Das umgebende Zytoplasma der Pflanzenzellen ist hier mit einem gelb fluoreszierenden Protein sichtbar gemacht. Die normalerweise grün erscheinenden Chloroplasten leuchten im Fluoreszenzmikroskop rot. Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam

Dadurch ändert das RNA-Molekül seine räumliche Struktur und die Proteinproduktion kann auf diese Weise entweder an- oder abgeschaltet werden. Für die Bakterien sind diese als Riboschalter bezeichneten Abschnitte ein schneller und effizienter Weg, die Proteinsynthese zu kontrollieren. In Chloroplasten von Pflanzenzellen konnten allerdings bisher natürlicherweise keine Riboschalter nachgewiesen werden.

Max-Planck-Wissenschaftler aus Golm bei Potsdam haben nun erstmals Riboschalter so verändert und in das Erbgut von Chloroplasten eingebaut, dass sie die Bildung einzelner Chloroplasten-Proteine steuern können. Die Forscher schleusten ein Gen in die Chloroplasten-DNA ein und versahen es mit einem Riboschalter. Theophyllin, ein Inhaltsstoff der Teepflanze, diente dabei als "Schalter": Es kann sich an den Riboschalter auf der Boten-RNA anlagern und so dafür sorgen, dass die Chloroplasten-Ribosomen die RNA ablesen können. "Wenn wir die Tabakpflanzen mit Theophyllin besprühen, bilden die Chloroplasten das entsprechende Protein. Fehlt Theophyllin dagegen, unterbleibt die Proteinproduktion. Mit dem Theophyllin-Riboschalter können wir ein Gen also beliebig an- und abschalten und beobachten, welche Auswirkungen dies hat", erklärt Ralph Bock vom Max-Planck-Institut für Molekulare Pflanzenpyhsiologie. Bislang war dies schwierig, denn das Chloroplasten-Erbgut enthält viele Gene, die für das Überleben unverzichtbar sind. Wird ein solches Gen dauerhaft abgeschaltet, stirbt die Zelle und kann nicht weiter untersucht werden.

Mit dem Theophyllin-Riboschalter lässt sich künftig jedoch nicht nur die Funktionsweise der Chloroplasten gezielter untersuchen. Auch in der Biotechnologie könnten Riboschalter in Zukunft eine wichtige Rolle spielen. Denn Chloroplasten eignen sich gut zur Produktion von Wirkstoffen. Denn jede Tabakzelle besitzt bis zu 100 Chlorplasten. Das Chloroplasten-Erbgut kommt daher in vielfacher Ausführung vor und kann dementsprechend mehr Protein bilden als die DNA im Zellkern. Die Potsdamer Wissenschaftler haben Tabakpflanzen beispielsweise genetisch so verändert, dass sie große Mengen eines Antibiotikums in ihren Blättern herstellen.

Proteine könnten also in genetisch veränderten Chloroplasten in viel größerer Menge hergestellt werden. In vielen Fällen schädigen diese Fremdproteine allerdings den Zellstoffwechsel oder die Fotosynthese, wenn die Zellen sie dauerhaft produzieren. Deshalb wachsen diese Pflanzen oft deformiert oder besonders langsam. Riboschalter könnten dies verhindern. Denn mit ihrer Hilfe können die entsprechenden Gene erst dann angeschaltet werden, wenn die Pflanze herangewachsen ist und die Ernte unmittelbar bevorsteht. Zudem haben Fremdgene in den Chloroplasten einen weiteren Vorteil: Sie werden fast ausschließlich durch die weibliche Eizelle vererbt. Fremdgene werden deshalb nur äußerst selten über die Pollen der Tabakpflanzen verbreitet.

Originalpublikation:
Inducible gene expression from the plastid genome by a synthetic riboswitch
Andreas Verhounig, Daniel Karcher, and Ralph Bock
PNAS, 22. März 2010, online vorab veröffentlicht (doi: 10.1073/pnas.0914423107)
Kontakt:
Prof. Dr. Ralph Bock
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel.: +49 331 567-8700
E-Mail: rbock@mpimp-golm.mpg.de
Ursula Ross-Stitt, Pressereferentin
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel.: +49 331 567-8310
E-Mail: Ross-Stitt@mpimp-golm.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimp-golm.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik