Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene in der Komfortzone - Umwelteinflüsse steuern Genexpression

27.02.2015

Das Erscheinungsbild von Organismen wird durch das Zusammenspiel von Umweltfaktoren und Genetik geprägt. PopulationsgenetikerInnen an der Vetmeduni Vienna zeigen in einer aktuellen Studie, dass sich Fruchtfliegen bei einer bestimmten Temperatur in einer Art genetischer Komfortzone befinden. Zwei unterschiedliche Fliegenstämme produzieren bei 18 Grad Celsius die annähernd gleichen Genprodukte, obwohl sich ihre Gene unterscheiden. Dieser auch beim Menschen beschriebene Effekt der Kanalisierung, bei dem sich ein Organismus trotz Störungen stabil weiterentwickelt, macht Lebewesen robust gegenüber genetischem und Umwelt-Stress. Die Ergebnisse wurden im Journal PLOS Genetics veröffentlicht.

Nicht alles, was in der DNA geschrieben steht, hat auch zwingend Auswirkungen auf den Organismus. Das ist spätestens seit der Erforschung der Epigenetik bekannt. Epigenetische Faktoren bestimmen nämlich mit, ob und wie aktiv Gene überhaupt sind.


Im Labor leben die Fruchtfliegen in kleinen Glasgefäßen.

Foto: Michael Bernkopf/Vetmeduni Vienna

Ein weniger bekannter Mechanismus ist die Kanalisierung. Er macht Lebewesen robust gegenüber genetischen Mutationen und Umweltfaktoren. Treten während der Entwicklung eines Organismus Störungen auf, wie beispielsweise extreme Lebensbedingungen oder Mutationen im Genom, bewirkt die Kanalisierung eine Pufferung dieser Störungen – der Organismus bleibt stabil und entwickelt sich ohne äußerlich erkennbare Veränderung weiter.

Komfortzone im Fliegengenom gefunden

Christian Schlötterer vom Institut für Populationsgenetik hat den Mechanismus der Kanalisation gemeinsam mit seinen KollegInnen an Fruchtfliegen untersucht. Das Team setzte dazu zwei genetisch unterschiedliche Fruchtfliegenstämme, Oregon und Samarkand, verschiedenen Temperaturen (13°C, 18°C, 23°C und 29°C) aus. Die WissenschafterInnen analysierten, wie sich die Genexpression aufgrund der unterschiedlichen Temperaturen in den Tieren verändert. Es stellte sich heraus, dass bei einer Temperatur von 18 Grad Celsius das Genexpressionsmuster der beiden Fliegenstämmen homogen war. Egal, ob bei Oregon oder Samarkand: Die Ausprägung der Gene ist über beide Stämme hinweg annähernd gleich.

„Bei 18 Grad Celsius dürfte die genetische Komfortzone der Fliegen liegen. Bei höheren oder niedrigeren Temperaturen verändert sich die Genexpression beider Fliegenstämme drastisch“, erklärt Schlötterer.

Pufferung des Genotyps

Der Effekt der Kanalisierung wurde bereits 1942 beschrieben. Forscher wiesen damals darauf hin, dass Organismen trotz veränderter äußerer Bedingungen oder genetische Mutationen in ihrer äußeren Erscheinung unverändert bleiben. Diese Art der entwicklungsbiologischen Pufferung stabilisiert die Entwicklung von Organismen.

„Entwickelt sich ein Organismus entlang des Kanalisierungspfades, also entlang der Komfortzone, können sich Mutationen zwar ansammeln, sie werden äußerlich jedoch nicht sichtbar. Wird der Kanalisierungspfad verlassen, treten diese ‚maskierten‘ Mutationen zutage. Es kommt zur Dekanalisierung. Dabei befinden sich Organismen außerhalb der Kanalisierung“, erklärt Schlötterer.

Dekanalisierung als Ursache komplexer genetischer Erkrankungen

In einer Publikation im Fachjournal Nature (Link zum Paper) stellte der amerikanische Wissenschafter Greg Gibson sogar die Theorie auf, dass Krankheiten wie Diabetes, Asthma, Depression und Herz-Kreislauferkrankungen Folgeerscheinungen der genetischen Dekanalisierung seien.

Er beschreibt, dass Migration, Ernährungsweise, Rauchen, Luftverschmutzung und psychologischer Stress zur Dekanalisierung führen und so bestimmte komplexe genetische Krankheiten verursachen.
„Die genetische Information alleine entscheidet also nicht, ob wir gesund oder krank werden. Es sind Umweltbedingungen und die Genetik, die in einem komplexen Zusammenspiel wirken“, so Schlötterer.

Service:

Der Artikel „Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster” von Jun Chen, Viola Nolte und Christian Schlötterer wird am 26.2.2015 um 20Uhr (MEZ) im Journal PLOS Genetics veröffentlicht.

Über die Veterinärmedizinische Universität Wien
Die Veterinärmedizinische Universität Wien (Vetmeduni Vienna) ist eine der führenden veterinärmedizinischen, akademischen Bildungs- und Forschungsstätten Europas. Ihr Hauptaugenmerk gilt den Forschungsbereichen Tiergesundheit, Lebensmittelsicherheit, Tierhaltung und Tierschutz sowie den biomedizinischen Grundlagen. Die Vetmeduni Vienna beschäftigt 1.300 MitarbeiterInnen und bildet zurzeit 2.300 Studierende aus. Der Campus in Wien Floridsdorf verfügt über fünf Universitätskliniken und zahlreiche Forschungseinrichtungen. Zwei Forschungsinstitute am Wiener Wilhelminenberg sowie ein Lehr- und Forschungsgut in Niederösterreich gehören ebenfalls zur Vetmeduni Vienna. Im Jahr 2015 feiert die Vetmeduni Vienna ihr 250-jähriges Bestehen. http://www.vetmeduni.ac.at

Wissenschaftlicher Kontakt:
Prof. Christian Schlötterer
Institut für Populationsgenetik
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 676-3544155
christian.schloetterer@vetmeduni.ac.at

Aussenderin:
Dr. Susanna Kautschitsch
Wissenschaftskommunikation / Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/de/infoservice/presseinformationen/presseinfo2015/gen...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

nachricht Goldene Hilfe gegen Hautkrankheiten
23.05.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie