Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene identifiziert: Forscher erlangen tiefere Einblicke in die Entstehung von Algengiften

07.08.2014

Besonders im Sommer kommt es oft zur Ausbreitung von Blaualgen in heimischen Seen. Dadurch kann es auch zu einer Häufung an für Umwelt und Mensch schädlichen Giftstoffen kommen.

Wissenschaftler des Forschungsinstituts für Limnologie der Uni Innsbruck am Mondsee haben nun jene Gene, die die Verbreitung der Giftbildung anregen, identifiziert und die Ergebnisse im Fachjournal „Applied and Environmental Microbiology“ veröffentlicht.


Das Cyanobakterium Microcystis sp. bildet in nährstoffbelasteten Gewässern während der Sommermonate häufig blaugrün gefärbte, toxische Algenblüten.

Kurmayer


Eine Algenprobe.

Kurmayer

Algen sind mikroskopisch kleine, pflanzliche Organismen, die in allen Gewässern der Erde vorkommen. Durch Nährstoffreichtum kann es im Sommer zur Massenentwicklung von Blaualgen in Gewässern kommen. Blaualgen sind genau genommen zur Photosynthese fähige Bakterien, sogenannte Cyanobakterien; die durch diese Bakterien entstehenden, meist grünlich-blauen Schlieren werden als Algen- oder Wasserblüten bezeichnet.

Dabei kann es zu einer Anhäufung von Giftstoffen im Gewässer kommen, vor allem, wenn sich die Cyanobakterien explosionsartig vermehren. Diese gefährliche Wirkung für das gesamte Nahrungsnetz trifft am Ende auch den Menschen.

Aber auch geringe Konzentrationen von Giftstoffen, wie z.B. das Lebertoxin Microcystin, können, bei Einnahme über einen längeren Zeitraum, die Erbsubstanz des Menschen schädigen und zu Tumoren führen. Die dadurch entstehenden direkten (etwa zur Wasseraufbereitung) und indirekten Kosten (zum Beispiel zur Ursachenbekämpfung) belaufen sich jährlich auf viele Millionen Euro.

Funktion von „egoistischen“ Genen

Um Maßnahmen gegen die Toxizität von Cyanobakterienblüten setzen zu können, ist es notwendig, zu verstehen, wie diese Toxine gebildet werden und insbesondere, wie rasch sich Gen-Mutationen für die Toxinproduktion durchsetzen und verbreiten.

„Unsere molekularen, ökologischen Untersuchungen zielen einerseits darauf ab, das Alter verschiedener Mutationen zu bestimmen und andererseits durch das Studium der Verbreitung herauszufinden, wie erfolgreich verschiedene relativ junge Genotypen im Ökosystem sind“, sagt Rainer Kurmayer, Leiter des Forschungsinstituts für Limnologie der Universität Innsbruck am Mondsee.

Eine wichtige Rolle in der Verbreitung der Toxinsynthese könnten sogenannte mobile Elemente haben, die auch als springende Gene bezeichnet werden, da sie ihre Position spontan innerhalb des Erbguts verändern und dadurch zu Mutationen führen. Diese Gene wurden auch als „egoistisch“ bezeichnet, da sie Ähnlichkeit mit Viren aufweisen und sehr häufig ohne offensichtlichen Zweck im Erbgut vorkommen. Eine wichtige Funktion dieser „springenden Gene“ könnte aber die Restrukturierung der Erbinformation sein, indem sie Mutationen hervorrufen.

Erst durch die sogenannte Hochdurchsatz-Sequenzierungs-Technologie der letzten Jahre wurde es möglich, diese mobilen Elemente im Erbgut von Organismen qualitativ und quantitativ vollständig zu erfassen. In ihrem aktuellen Projekt, dessen Ergebnisse kürzlich im Fachjournal „Applied and Environmental Microbiology“ publiziert wurden, konnten die Mondseer Forscher die Genominformation des Cyanobakteriums Planktothrix sp. und den Anteil dieser mobilen Elemente entschlüsseln. Mit eigens entwickelten genetisch modifizierten Elementen können diese Gene nun in Algen experimentell eingeschleust und ihr Einfluss auf die Toxinbildung überprüft werden.

„Ein zweiter Ansatz unserer Forschungsgruppe besteht darin, dass wir die Häufigkeit und Aktivität dieser Elemente direkt in den Gewässern beobachten und ihre Veränderung in Abhängigkeit von klimatischen Veränderungen, wie steigende Wassertemperatur oder Überdüngung und Verschmutzung von Gewässern, analysieren“, erklärt Rainer Kurmayer. Während bei pathogenen Bakterien Erbanlagen z.B. für gefährliche Antibiotikaresistenzen direkt zwischen einzelnen Arten von Bakterien übertragen werden können, ist dies bei den Erbanlagen zur Toxinproduktion bisher nicht beobachtet worden. Weitere Forschung ist nötig, um herauszufinden, welche Umweltfaktoren das Auftreten von Mutationen begünstigen und wie neue (un)giftige Genotypen entstehen können.

Das Forschungsprojekt wurde vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF) finanziert. Die Veröffentlichung erschien in der aktuellen Ausgabe des Fachmagazins Applied and Environmental Microbiology.

Rückfragehinweis:
Ass.-Prof. Dr. Rainer Kurmayer
Leiter des Forschungsinstituts für Limnologie, Mondsee
Universität Innsbruck
Telefon: +43 512 507-50242
E-Mail: rainer.kurmayer@uibk.ac.at

Dr. Sabine Wanzenböck
Öffentlichkeitsarbeit Forschungsinstitut für Limnologie, Mondsee
Universität Innsbruck
Telefon: +43 512 507-50239
E-Mail: sabine.wanzenboeck@uibk.ac.at

Weitere Informationen:

http://aem.asm.org/content/80/16/4887.full Originalartikel: Christiansen G, Goesmann A, Kurmayer R. (2014). Elucidation of insertion elements carried on plasmids and in vitro construction of shuttle vectors from the toxic cyanobacterium Planktothrix. Appl. Environ. Microbiol. 80:4887-4897.

Dr. Sabine Wanzenböck | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie