Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene aus dem 18. Jahrhundert helfen Patienten von heute

06.01.2011
Arbeitsgruppe Palaeogenetik der Universität Mainz an Studie über durch genetische Mutation verursachte Akromegalie beteiligt / Publikation im renommierten New England Journal of Medicine am 6. Januar 2011

Ein internationales Forscherteam hat unter der Leitung von Wissenschaftlern der London School of Medicine and Dentistry die genetische Mutation identifiziert, die für Akromegalie – auch bekannt als „Riesenwachstum“ oder „Gigantismus“ – verantwortlich ist.

Die Ergebnisse der Studie, an der unter anderem die Arbeitsgruppe Palaeogenetik des Instituts für Anthropologie an der Johannes Gutenberg-Universität Mainz beteiligt war, werden am 6. Januar 2011 im renommierten New England Journal of Medicine publiziert und sollen helfen, Patienten mit Akromegalie zu therapieren.

Der sogenannte „Gigantismus“ wird meist durch einen Tumor der Hypophyse (Hirnanhangsdrüse) verursacht. Die Hypophyse selbst ist ein Organ, das verschiedene Hormone produziert, die wiederum unterschiedlichste Funktionen wahrnehmen, so zum Beispiel die Regulation von Wachstum. Tumore der Hypophyse können neben einem unkontrollierten Wachstum außerdem zu einer Reihe von Symptomen wie unregelmäßigen Gesichtsformen, Kopfschmerzen, Sehstörungen, degenerativen Gelenkerkrankungen oder verminderter Glucosetoleranz führen.

Márta Korbonits, Professor of Endocrinology and Metabolism at Barts and the London School of Medicine and Dentistry, untersuchte zunächst das Gen AIP, das bereits seit dem Jahr 2006 als Verursacher von Hypophysetumoren bekannt ist, und stellte eine bestimmte Mutation fest, die familiär gehäuft in irischen Patienten mit Akromegalie vorkam. Daraufhin untersuchten Professor Dr. Joachim Burger und Martina Unterländer vom Institut für Anthropologie der Johannes Gutenberg-Universität Mainz, international führende Experten auf dem Gebiet der Paläogenetik, die DNA eines Skeletts eines an Akromegalie leidenden Patienten aus dem 18. Jahrhundert, dessen Überreste im Hunterian Museum in London aufbewahrt sind. Das Forscherteam stellte die identische Mutation wie in lebenden Patienten fest. Die weitere Analyse von DNA-Abschnitten in der Nähe dieses Gens bedingte die Schlussfolgerung, dass der sogenannte „Irische Gigant“ aus dem Hunterian Museum diese Mutation von demselben Vorfahren geerbt hatte wie eine Reihe von Familien in Irland, die heute an der Erbkrankheit leiden. Die daraufhin angestellten komplexen biostatischen Berechnungen ergaben, dass die ursprüngliche Mutation vor ungefähr 1.500 Jahren erfolgte und seitdem von Generation zu Generation weitergegeben wird. Ungefähr 200 bis 300 Personen müssten die Mutation heute noch in sich tragen.

„Aufgrund der alten DNA aus dem Skelett konnte die Theorie des Zusammenhangs zwischen der Mutation und dieser Erkrankung, die in der Vergangenheit so häufig in einer Tragödie endete, erst solide begründet werden“, erklärt Professor Dr. Joachim Burger von der Universität Mainz und ergänzt: „Die biomathematischen Berechnungen konnten sogar die Historie der Krankheit recht genau nachvollziehen.“ „Der wichtigste klinische Aspekt hierbei ist, dass wir Träger der Genmutante identifizieren und behandeln können, noch bevor sie zu ‚Giganten‘ werden“, so Márta Korbonits, die Leiterin der Studie. Professor Patrick Morrison, Co-Autor der Studie von der Queens University Belfast, fügt hinzu: „Der Nutzen der Studie besteht darin, dass wir nun einen genetischen Bluttest zur Verfügung haben, den Familien mit Risikopotenzial nutzen können, um die Krankheit frühzeitig zu detektieren und übermäßiges Wachstum zu verhindern.“

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/Deutsch/Home/Home.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics