Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genaustausch erlaubt Bakterien fit zu bleiben

16.06.2017

Forscher am Biozentrum der Universität Basel haben herausgefunden, dass Bartonella-Bakterien mithilfe eines im Genom kodierten domestizierten Virus effizient Gene untereinander austauschen. Dieser Genaustausch findet aber nur unter Bakterien statt, die eine hohe Fitness aufweisen. Der Austausch ermöglicht den Krankheitserregern, die Ansammlung schädlicher Gendefekte zu verhindern, vorteilhafte Genmutationen zu verbreiten und damit dauerhaft fit zu bleiben. Das Fachjournal «Cell Systems» hat die Ergebnisse veröffentlicht.

Bartonellen sind Bakterien, die beim Menschen verschiedene Infektionskrankheiten auslösen können, beispielsweise die Katzenkratzkrankheit. Um während des Infektionszyklus keine schädigenden Mutationen anzuhäufen benötigen Krankheitserreger effiziente DNA-Reparaturmechanismen. Dem Austausch von intakten Genen zwischen Bakterien kommt hierbei eine wichtige Rolle zu. So können Fehler im Genpool ausgemerzt und das genetische Material frisch gehalten werden.


Der Erreger Bartonella henselae.

Universität Basel, Biozentrum

Das Team von Prof. Christoph Dehio am Biozentrum der Universität Basel fand in Zusammenarbeit mit der ETH Zürich heraus, dass Bartonellen virusähnliche Partikel, sogenannte Gene Transfer Agents, für einen effizienten Genaustausch nutzen. Bereits geschädigte Bakterien sind von diesem Gentransfer ausgeschlossen und haben somit geringe Chancen, ihr fehlerhaftes Genmaterial in der Population zu verbreiten.

Gentransfer durch domestizierte Viren

Gene Transfer Agents sind evolutionäre Abkömmlinge von sogenannten Bakteriophagen, das sind Viren, die Bakterien befallen. Anders als das eigene Genom bei Bakteriophagen verpacken sie zufällige Teile des bakteriellen Genoms und übertragen dieses auf andere Bakterien. Mithilfe dieser domestizierten Bakteriophagen können Bakterien einer Population effizient DNA-Fragmente untereinander austauschen.

Diese Form des Gentransfers hat jedoch einen hohen Preis: Der Teil der Bakterienpopulation, der Gene Transfer Agent Partikel produziert, stirbt bei deren Freisetzung. Welchen Vorteil verschaffen die sich opfernden Bakterien dem Teil der Bakterienpopulation, der weiterlebt und die Genfragmente aufnimmt?

Beim Wachstum einer Bakterienpopulation teilen sich die Zellen fortwährend. Bei jeder Zellteilung wird das Erbmaterial verdoppelt und an die beiden Nachkommen weitergegeben. Dabei schleichen sich immer wieder Fehler ein. Nur durch effiziente Reparaturmechanismen – unter anderem durch den Austausch von fehlerfreiem genetischem Material – lässt sich eine Ansammlung genetischer Fehler verhindern. Kurz: Das genetische Material bleibt frisch.

«Ein weiterer evolutionärer Vorteil des Gene Transfer Agents ist, dass sich so auch neues Genmaterial innerhalb der Bakterienpopulation verbreitet und ihr vorteilhafte neue Eigenschaften verleiht. Dazu zählen beispielweise auch Resistenzen gegen Antibiotika», erklärt Dehio. Was für das Bakterium ein Überlebensvorteil bedeutet, kann für den Menschen hingegen bedrohlich sein.

Nur fitte Bakterien tauschen Gene

Wie genau der Austausch von genetischem Material mithilfe des Gene Transfer Agents unter den Bakterien funktioniert und wie er geregelt ist, war bislang nicht bekannt. Das Team von Dehio hat in seiner Studie nun umfassend die Komponenten identifiziert, die bei dem Prozess wichtig sind: Es zeigte sich, dass Stresssignalen eine Schlüsselrolle zukommt. Diese sorgen dafür, dass lediglich Bakterien genetisches Material austauschen, denen es gut geht; während bei Bakterien, die aufgrund unvorteilhafter Genmutationen unter einem hohen Stresslevel stehen, dieser Austausch nicht stattfindet.

«Man könnte auch sagen, nur die fitten und genetisch vielversprechenden Bakterien einer Population teilen sich und tauschen dabei genetisches Material aus. Bei genetisch geschwächten und dadurch gestressten Bakterien hingegen ist dieser Mechanismus ausgeschaltet», so Maxime Québatte, der Erstautor der Studie.

Der Austausch von intaktem Genmaterial verleiht den Bakterien dauerhaft eine hohe Fitness, die es ihnen ermöglicht, langfristig im Wirt zu überleben und sich effizient auf neue Wirte zu übertragen. Dieses Wissen lässt sich nun im Gegenzug dazu nutzen, neue Strategien gegen Infektionen mit dem Krankheitserreger Bartonella zu entwickeln.

Originalbeitrag

Maxime Québatte, Matthias Christen, Alexander Harms, Jonas Körner, Beat Christen, and Christoph Dehio
Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen
Cell Systems (2017), doi: 10.1016/j.cels.2017.05.011

Weitere Auskünfte

Prof. Dr. Christoph Dehio, Universität Basel, Biozentrum, Tel. +41 61 207 21 40, E-Mail: christoph.dehio@unibas.ch
Heike Sacher, Universität Basel, Biozentrum, Kommunikation, Tel. +41 61 207 14 49, E-Mail: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie