Genau jetzt! – Zucker beeinflusst den Zeitpunkt der Blütenbildung

Durch Experimente an Arabidopsis thaliana fanden die Forscher heraus, dass das Zuckermolekül Trehalose-6-Phosphat den Zeitpunkt der Blütenbildung beeinflusst.<br><br>Foto: Josef Bergstein © MPI-MP<br>

Ein komplexes Netzwerk aus Lichtrezeptoren und anderen Proteinen überwacht kontinuierlich Umweltbedingungen wie Licht und Temperatur, um den perfekten Zeitpunkt für den Beginn der Blütenbildung zu finden. Neben den äußeren Faktoren muss auch der Energiehaushalt der Pflanze stimmen.

Wie Forscher vom MPI-MP und dem MPI für Entwicklungsbiologie in Tübingen jetzt in Science berichten, übernimmt in der Ackerschmalwand das Zuckermolekül Trehalose-6-Phosphat (T6P) eine Schlüsselrolle bei der Überwachung der Energiereserven und somit bei der Entscheidung, wann die Blütenbildung beginnt.

Die Tageslänge ist einer der wichtigsten Faktoren für den Beginn der Blütenbildung. Manche Pflanzen brauchen lange Tage und blühen daher im Sommer, andere bevorzugen kürzere Tage und blühen dementsprechend im Frühjahr oder Herbst. Die Tageslänge nehmen die Pflanzen über die Blätter wahr. Bei den richtigen Lichtbedingungen führt ein Zusammenspiel aus Lichtrezeptoren und anderen Proteinen dazu, dass im Zellkern der Ackerschmalwand das Gen FLOWERING LOCUS T (FT) abgelesen wird. Das FT-Protein wandert bis in die Sprossspitze und bewirkt, dass anstelle der Blätter nun Blüten gebildet werden.
Ab einem bestimmten Alter beginnt die Ackerschmalwand jedoch ganz unabhängig von der Tageslänge mit der Blütenbildung. Dieser Sicherheitsmechanismus wird durch eine spezielle Mikro-RNA kontrolliert und gewährleistet, dass sich Pflanzen auch unter weniger guten Bedingungen fortpflanzen.

Neben Licht und Alter scheint auch der Energiestatus der Pflanze den Zeitpunkt der Blütenbildung maßgeblich zu beeinflussen. Die Bildung von Blüten ist ein äußerst energieintensiver Prozess und diese Energie muss in der Pflanze in Form von Zucker bereitstehen. Lange Zeit war nicht klar, auf welche Weise Zuckermoleküle den Zeitpunkt der Blütenbildung mitbestimmen. Wissenschaftler des Max-Planck-Instituts für Molekulare Pflanzenphysiologie und des Max-Planck-Instituts für Entwicklungsbiologie haben jetzt herausgefunden, dass das Zuckermolekül T6P gleich beide oben beschriebenen Signalwege beeinflusst.

„Da T6P in Pflanzen nur in kleinsten Mengen vorkommt, nahm man an, dass es sich hierbei um ein Signalmolekül handeln könnte“, erklärt Vanessa Wahl, die Erstautorin der Veröffentlichung. „Allerdings wusste bisher niemand, wie das Molekül in das komplexe genetische Netzwerk, das den Zeitpunkt der Blütenbildung steuert, eingreift.“ Indem die Forscher die Produktion von T6P beeinträchtigten, konnten sie das Blühen verzögern und im Extremfall sogar vollständig verhindern. Das gelang selbst dann, wenn die Pflanzen ansonsten optimalen Bedingungen ausgesetzt waren. „Wir konnten zeigen, dass dieser Zucker unverzichtbar für die Herstellung des FT-Proteins in den Blättern ist“, ergänzt ihr Kollege und korrespondierender Autor Markus Schmid, „und wie wir wissen, ist die Blütenbildung ohne FT sehr verzögert.“
Darüber hinaus beeinflusst T6P sowohl die Herstellung der Mikro-RNA als auch die Umsetzung ihrer Zielgene, welche zusammen die altersabhängige Induktion des Blühens kontrollieren. Das Zuckermolekül steuert somit zwei der wichtigsten Kontrollwege, die den Zeitpunkt der Blütenbildung regulieren.

„Obwohl klar war, dass die Pflanze ihren Energiegehalt überprüfen muss, bevor sie mit der Blütenbildung beginnt, gab es bisher keine Erklärung dafür, wie das auf molekularer Ebene funktionieren sollte“, beschreibt Vanessa Wahl den Stand der Wissenschaft vor der Entdeckung. Dem Wissen über das komplexe Netzwerk, das die Blütenbildung reguliert, konnten die Forscher aus Potsdam und Tübingen einen wichtigen Faktor hinzufügen.

Kontakt
Dr. Vanessa Wahl
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331 567 8116
Vanessa.Wahl@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Dr. Markus Schmid
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel. 07071 601 1411
Markus.Schmid@tuebingen.mpg.de
http://www.eb.tuebingen.mpg.de

Claudia Steinert
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331 567 8275
Steinert@mpimp-golm.mpg.de

Originalveröffentlichung
Vanessa Wahl, Jathish Ponnu, Armin Schlereth, Stéphanie Arrivault, Tobias Langenecker, Annika Franke, Regina Feil, John E. Lunn, Mark Stitt, Markus Schmid
Regulation of Flowering Time by Trehalose-6-phosphate Signaling in Arabidopsis thaliana

Science; Veröffentlicht am 08. Februar 2013; DOI: 10.1126/science.1230406

Media Contact

Ursula Ross-Stitt Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Industrie-4.0-Lösung für niedrigschwelligen Zugang zu Datenräumen

»Energizing a Sustainable Industry« – das Motto der Hannover Messe 2024 zeigt klar, wie wichtig eine gleichermaßen leistungsstarke und nachhaltige Industrie für den Fertigungsstandort Deutschland ist. Auf der Weltleitmesse der…

Quantenpräzision: Eine neue Art von Widerstand

Physikforschende der Universität Würzburg haben eine Methode entwickelt, die die Leistung von Quantenwiderstands-Normalen verbessern kann. Sie basiert auf einem Quantenphänomen namens anomaler Quanten-Hall-Effekt. In der industriellen Produktion oder in der…

Sicherheitslücke in Browser-Schnittstelle erlaubt Rechnerzugriff über Grafikkarte

Forschende der TU Graz waren über die Browser-Schnittstelle WebGPU mit drei verschiedenen Seitenkanal-Angriffen auf Grafikkarten erfolgreich. Die Angriffe gingen schnell genug, um bei normalem Surfverhalten zu gelingen. Moderne Websites stellen…

Partner & Förderer