Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genau jetzt! – Zucker beeinflusst den Zeitpunkt der Blütenbildung

08.02.2013
Eine Pflanze kann sich nur dann erfolgreich vermehren, wenn sie zur richtigen Zeit blüht.

Ein komplexes Netzwerk aus Lichtrezeptoren und anderen Proteinen überwacht kontinuierlich Umweltbedingungen wie Licht und Temperatur, um den perfekten Zeitpunkt für den Beginn der Blütenbildung zu finden. Neben den äußeren Faktoren muss auch der Energiehaushalt der Pflanze stimmen.


Durch Experimente an Arabidopsis thaliana fanden die Forscher heraus, dass das Zuckermolekül Trehalose-6-Phosphat den Zeitpunkt der Blütenbildung beeinflusst.

Foto: Josef Bergstein © MPI-MP

Wie Forscher vom MPI-MP und dem MPI für Entwicklungsbiologie in Tübingen jetzt in Science berichten, übernimmt in der Ackerschmalwand das Zuckermolekül Trehalose-6-Phosphat (T6P) eine Schlüsselrolle bei der Überwachung der Energiereserven und somit bei der Entscheidung, wann die Blütenbildung beginnt.

Die Tageslänge ist einer der wichtigsten Faktoren für den Beginn der Blütenbildung. Manche Pflanzen brauchen lange Tage und blühen daher im Sommer, andere bevorzugen kürzere Tage und blühen dementsprechend im Frühjahr oder Herbst. Die Tageslänge nehmen die Pflanzen über die Blätter wahr. Bei den richtigen Lichtbedingungen führt ein Zusammenspiel aus Lichtrezeptoren und anderen Proteinen dazu, dass im Zellkern der Ackerschmalwand das Gen FLOWERING LOCUS T (FT) abgelesen wird. Das FT-Protein wandert bis in die Sprossspitze und bewirkt, dass anstelle der Blätter nun Blüten gebildet werden.
Ab einem bestimmten Alter beginnt die Ackerschmalwand jedoch ganz unabhängig von der Tageslänge mit der Blütenbildung. Dieser Sicherheitsmechanismus wird durch eine spezielle Mikro-RNA kontrolliert und gewährleistet, dass sich Pflanzen auch unter weniger guten Bedingungen fortpflanzen.

Neben Licht und Alter scheint auch der Energiestatus der Pflanze den Zeitpunkt der Blütenbildung maßgeblich zu beeinflussen. Die Bildung von Blüten ist ein äußerst energieintensiver Prozess und diese Energie muss in der Pflanze in Form von Zucker bereitstehen. Lange Zeit war nicht klar, auf welche Weise Zuckermoleküle den Zeitpunkt der Blütenbildung mitbestimmen. Wissenschaftler des Max-Planck-Instituts für Molekulare Pflanzenphysiologie und des Max-Planck-Instituts für Entwicklungsbiologie haben jetzt herausgefunden, dass das Zuckermolekül T6P gleich beide oben beschriebenen Signalwege beeinflusst.

„Da T6P in Pflanzen nur in kleinsten Mengen vorkommt, nahm man an, dass es sich hierbei um ein Signalmolekül handeln könnte“, erklärt Vanessa Wahl, die Erstautorin der Veröffentlichung. „Allerdings wusste bisher niemand, wie das Molekül in das komplexe genetische Netzwerk, das den Zeitpunkt der Blütenbildung steuert, eingreift.“ Indem die Forscher die Produktion von T6P beeinträchtigten, konnten sie das Blühen verzögern und im Extremfall sogar vollständig verhindern. Das gelang selbst dann, wenn die Pflanzen ansonsten optimalen Bedingungen ausgesetzt waren. „Wir konnten zeigen, dass dieser Zucker unverzichtbar für die Herstellung des FT-Proteins in den Blättern ist“, ergänzt ihr Kollege und korrespondierender Autor Markus Schmid, „und wie wir wissen, ist die Blütenbildung ohne FT sehr verzögert.“
Darüber hinaus beeinflusst T6P sowohl die Herstellung der Mikro-RNA als auch die Umsetzung ihrer Zielgene, welche zusammen die altersabhängige Induktion des Blühens kontrollieren. Das Zuckermolekül steuert somit zwei der wichtigsten Kontrollwege, die den Zeitpunkt der Blütenbildung regulieren.

„Obwohl klar war, dass die Pflanze ihren Energiegehalt überprüfen muss, bevor sie mit der Blütenbildung beginnt, gab es bisher keine Erklärung dafür, wie das auf molekularer Ebene funktionieren sollte“, beschreibt Vanessa Wahl den Stand der Wissenschaft vor der Entdeckung. Dem Wissen über das komplexe Netzwerk, das die Blütenbildung reguliert, konnten die Forscher aus Potsdam und Tübingen einen wichtigen Faktor hinzufügen.

Kontakt
Dr. Vanessa Wahl
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331 567 8116
Vanessa.Wahl@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Dr. Markus Schmid
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel. 07071 601 1411
Markus.Schmid@tuebingen.mpg.de
http://www.eb.tuebingen.mpg.de

Claudia Steinert
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331 567 8275
Steinert@mpimp-golm.mpg.de

Originalveröffentlichung
Vanessa Wahl, Jathish Ponnu, Armin Schlereth, Stéphanie Arrivault, Tobias Langenecker, Annika Franke, Regina Feil, John E. Lunn, Mark Stitt, Markus Schmid
Regulation of Flowering Time by Trehalose-6-phosphate Signaling in Arabidopsis thaliana

Science; Veröffentlicht am 08. Februar 2013; DOI: 10.1126/science.1230406

Ursula Ross-Stitt | Max-Planck-Institut
Weitere Informationen:
http://www.mpimp-golm.mpg.de
http://www.mpg.de/6893761/zucker-bluetenbildung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie