Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen-Schalter für Neubildung von Nervenzellen im Zebrafisch entdeckt

19.11.2012
Forscher des DFG-Forschungszentrums für Regenerative Therapien Dresden – Exzellenzcluster der TU Dresden (CRTD) haben ein Gen identifiziert, dass die Regeneration von Nervenzellen bei Zebrafischen nach Gehirnverletzungen steuert.

Das Gen fungiert als Schalter, der umgelegt werden muss, damit die Zellneubildung eingeleitet werden kann. Das Gen könnte den fundamentalen Unterschied zwischen dem adulten Gehirn eines Wirbel- und eines Säugetieres ausmachen.


Im Vorderhirn des erwachsenen Zebrafisches befinden sich die Zellen, in denen das Gen Gata3 (rot) angeschaltet ist, sowohl direkt am Gehirnventrikel (Bereich der neuralen Stammzellen) als auch in tieferen Gehirnschichten (Bereich der Nervenzellen, grün). Die neugebildeten Zellen sind markiert und zeigen, dass sich viele der Gata3-positiven Zellen vor kurzem geteilt haben (cyam markiert).

Foto: Kizil und Brand

Im Gegensatz zum Zebrafisch kann das menschliche Gehirn nach schwerwiegenden Verletzungen praktisch keine zerstörten Nervenzellen mehr neu bilden, so dass die betroffenen Gehirnareale dauerhaft geschädigt bleiben. (Developmental Cell 2012)

Schritt für Schritt entschlüsselt die Arbeitsgruppe des Dresdner Entwicklungsbiologen Professor Michael Brand, wie erwachsene Zebrafischgehirne nach einer Verletzung regenerieren können - eine phantastische Fähigkeit, die Gehirne von Säugetieren leider nicht besitzen: Im ersten Schritt konnten die Forscher zeigen, dass selbst schwerwiegende Gehirnverletzungen in erwachsenen Zebrafischen nicht zu einer chronischen Narbenbildung führen, im Gegensatz zum Menschen. Darüber hinaus konnten sie erstmals die Stammzellen identifizieren, die für die Regeneration von Nervenzellen im Zebrafischgehirn verantwortlich sind, (Development 2011, DOI 10.1242/dev.072587).
Im November 2012 wies die Dresdner Arbeitsgruppe nach, dass Entzündungsreaktionen beim Zebrafisch notwendig sind, damit verlorene Nervenzellen nach Gehirnverletzungen durch die Aktivierung der neuralen Stammzellen ersetzt werden können. Dies war ein überraschendes Ergebnis, da seit Jahrzehnten in der Medizin darüber diskutiert wird, ob die Reaktion des Immunsystems nach Verletzungen des zentralen Nervensystems eher den Heilungsprozess fördert oder diesen verhindert (Science 2012, DOI 10.1126.science.1228773). Welches Gen startet den Regenerationsprozess im Fischgehirn? Dieser Frage ging die Arbeitsgruppe in einer Forschungsarbeit nach, die aktuell in dem amerikanischen Magazin Developmental Cell publiziert wurde.

Systematisch wurde auf molekularer Ebene nach Genen gesucht, die nach Gehirnverletzungen angeschaltet werden. „Gata3 ist ein sogenannter Transkriptionsfaktor“, erläutert Professor Michael Brand. „Es handelt sich um ein Protein, das quasi als Hauptschalter funktioniert und sehr viele andere Gene im Regenerationsprozess steuert. Es steht am Beginn einer Kaskade von molekularen Abläufen und ist für Neubildung von Nervenzellen im Zebrafischgehirn essentiell.“ Wurde Gata3 hingegen blockiert, war eine Regeneration der Nervenzellen nicht möglich. Die Wissenschaftler konnten unterm Mikroskop beobachten, dass Gata3 früh nach einer Verletzung des Gehirns angeschaltet wird, um den Neubildungsprozess von Nervenzellen zu starten. Im gesunden Gehirn ist es hingegen inaktiv.
„Dieses Gen hat verschiedene Funktionen“, fand Dr. Caghan Kizil, Wissenschaftler in der Dresdner Arbeitsgruppe von Professor Brand, heraus. Zum einen steuert Gata3 in den neuronalen Stammzellen nach Verletzungen im Fischgehirn die Zellteilung. Es schafft somit eine direkte Verbindung zwischen der Verletzung und der Zellneubildung. Zum anderen wirkt das Protein Gata3 auch in neugebildeten Nervenzellen. Es steuert die Migration, das heißt, es gibt das Signal, damit sich die neugebildeten Nervenzellen innerhalb des Zebrafischgehirns an die verletzte Stelle überhaupt hinbewegen, wo sie dann die zerstörten Areale ersetzen.

Darüber hinaus konnten die Dresdner Wissenschaftler zeigen, dass Gata3 nicht nur das Starter-Gen bei der Regeneration von Nervenzellen, sondern auch bei der Regeneration von Zellen nach Herz- sowie Flossenverletzungen ist. Gata3 spielt also beim Zebrafisch eine zentrale Rolle bei der Regenerationsfähigkeit verschiedener Organe.

Aufgrund ihrer gemeinsamen evolutionären Abstammung sind Gene und molekulare Mechanismen zwischen Fisch und Mensch hoch konserviert. Als Modellorganismus ist der Fisch deshalb sehr gut geeignet, neben genetischem Basiswissen auch mehr über menschliche Krankheiten herauszufinden. Das Wissen um die Mechanismen der Selbstheilung bei Zebrafischen könnte deshalb in Zukunft dazu beitragen, neue therapeutische Ansätze bei Krankheiten und Verletzungen des Gehirns zu entwickeln.

Publikation
Caghan Kizil1,2, Nikos Kyritsis1,2, Stefanie Dudczig1,2,Volker Kroehne1,2, Dorian Freudenreich1, Jan Kaslin1,3, and Michael Brand1: Regenerative Neurogenesis from Neural Progenitor Cells Requires Injury-Induced Expression of Gata3. Developmental Cell 2012, DOI 0.1016/j.devcel.2012.10.014

1Biotechnology Center (BIOTEC, Technische Universität Dresden, Germany
2DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence at the TU Dresden (CRTD), Technische Universität Dresden, Germany

3Australian Regenerative Medicine Institute (ARMI), Monash University, Australia

Birte Urban-Eicheler | CRT Dresden
Weitere Informationen:
http://www.crt-dresden.de
http://www.crt-dresden.de/de/presse-oeffentlichkeit/pressemitteilungen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017 | Physik Astronomie

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE