Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen-Schalter für Neubildung von Nervenzellen im Zebrafisch entdeckt

19.11.2012
Forscher des DFG-Forschungszentrums für Regenerative Therapien Dresden – Exzellenzcluster der TU Dresden (CRTD) haben ein Gen identifiziert, dass die Regeneration von Nervenzellen bei Zebrafischen nach Gehirnverletzungen steuert.

Das Gen fungiert als Schalter, der umgelegt werden muss, damit die Zellneubildung eingeleitet werden kann. Das Gen könnte den fundamentalen Unterschied zwischen dem adulten Gehirn eines Wirbel- und eines Säugetieres ausmachen.


Im Vorderhirn des erwachsenen Zebrafisches befinden sich die Zellen, in denen das Gen Gata3 (rot) angeschaltet ist, sowohl direkt am Gehirnventrikel (Bereich der neuralen Stammzellen) als auch in tieferen Gehirnschichten (Bereich der Nervenzellen, grün). Die neugebildeten Zellen sind markiert und zeigen, dass sich viele der Gata3-positiven Zellen vor kurzem geteilt haben (cyam markiert).

Foto: Kizil und Brand

Im Gegensatz zum Zebrafisch kann das menschliche Gehirn nach schwerwiegenden Verletzungen praktisch keine zerstörten Nervenzellen mehr neu bilden, so dass die betroffenen Gehirnareale dauerhaft geschädigt bleiben. (Developmental Cell 2012)

Schritt für Schritt entschlüsselt die Arbeitsgruppe des Dresdner Entwicklungsbiologen Professor Michael Brand, wie erwachsene Zebrafischgehirne nach einer Verletzung regenerieren können - eine phantastische Fähigkeit, die Gehirne von Säugetieren leider nicht besitzen: Im ersten Schritt konnten die Forscher zeigen, dass selbst schwerwiegende Gehirnverletzungen in erwachsenen Zebrafischen nicht zu einer chronischen Narbenbildung führen, im Gegensatz zum Menschen. Darüber hinaus konnten sie erstmals die Stammzellen identifizieren, die für die Regeneration von Nervenzellen im Zebrafischgehirn verantwortlich sind, (Development 2011, DOI 10.1242/dev.072587).
Im November 2012 wies die Dresdner Arbeitsgruppe nach, dass Entzündungsreaktionen beim Zebrafisch notwendig sind, damit verlorene Nervenzellen nach Gehirnverletzungen durch die Aktivierung der neuralen Stammzellen ersetzt werden können. Dies war ein überraschendes Ergebnis, da seit Jahrzehnten in der Medizin darüber diskutiert wird, ob die Reaktion des Immunsystems nach Verletzungen des zentralen Nervensystems eher den Heilungsprozess fördert oder diesen verhindert (Science 2012, DOI 10.1126.science.1228773). Welches Gen startet den Regenerationsprozess im Fischgehirn? Dieser Frage ging die Arbeitsgruppe in einer Forschungsarbeit nach, die aktuell in dem amerikanischen Magazin Developmental Cell publiziert wurde.

Systematisch wurde auf molekularer Ebene nach Genen gesucht, die nach Gehirnverletzungen angeschaltet werden. „Gata3 ist ein sogenannter Transkriptionsfaktor“, erläutert Professor Michael Brand. „Es handelt sich um ein Protein, das quasi als Hauptschalter funktioniert und sehr viele andere Gene im Regenerationsprozess steuert. Es steht am Beginn einer Kaskade von molekularen Abläufen und ist für Neubildung von Nervenzellen im Zebrafischgehirn essentiell.“ Wurde Gata3 hingegen blockiert, war eine Regeneration der Nervenzellen nicht möglich. Die Wissenschaftler konnten unterm Mikroskop beobachten, dass Gata3 früh nach einer Verletzung des Gehirns angeschaltet wird, um den Neubildungsprozess von Nervenzellen zu starten. Im gesunden Gehirn ist es hingegen inaktiv.
„Dieses Gen hat verschiedene Funktionen“, fand Dr. Caghan Kizil, Wissenschaftler in der Dresdner Arbeitsgruppe von Professor Brand, heraus. Zum einen steuert Gata3 in den neuronalen Stammzellen nach Verletzungen im Fischgehirn die Zellteilung. Es schafft somit eine direkte Verbindung zwischen der Verletzung und der Zellneubildung. Zum anderen wirkt das Protein Gata3 auch in neugebildeten Nervenzellen. Es steuert die Migration, das heißt, es gibt das Signal, damit sich die neugebildeten Nervenzellen innerhalb des Zebrafischgehirns an die verletzte Stelle überhaupt hinbewegen, wo sie dann die zerstörten Areale ersetzen.

Darüber hinaus konnten die Dresdner Wissenschaftler zeigen, dass Gata3 nicht nur das Starter-Gen bei der Regeneration von Nervenzellen, sondern auch bei der Regeneration von Zellen nach Herz- sowie Flossenverletzungen ist. Gata3 spielt also beim Zebrafisch eine zentrale Rolle bei der Regenerationsfähigkeit verschiedener Organe.

Aufgrund ihrer gemeinsamen evolutionären Abstammung sind Gene und molekulare Mechanismen zwischen Fisch und Mensch hoch konserviert. Als Modellorganismus ist der Fisch deshalb sehr gut geeignet, neben genetischem Basiswissen auch mehr über menschliche Krankheiten herauszufinden. Das Wissen um die Mechanismen der Selbstheilung bei Zebrafischen könnte deshalb in Zukunft dazu beitragen, neue therapeutische Ansätze bei Krankheiten und Verletzungen des Gehirns zu entwickeln.

Publikation
Caghan Kizil1,2, Nikos Kyritsis1,2, Stefanie Dudczig1,2,Volker Kroehne1,2, Dorian Freudenreich1, Jan Kaslin1,3, and Michael Brand1: Regenerative Neurogenesis from Neural Progenitor Cells Requires Injury-Induced Expression of Gata3. Developmental Cell 2012, DOI 0.1016/j.devcel.2012.10.014

1Biotechnology Center (BIOTEC, Technische Universität Dresden, Germany
2DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence at the TU Dresden (CRTD), Technische Universität Dresden, Germany

3Australian Regenerative Medicine Institute (ARMI), Monash University, Australia

Birte Urban-Eicheler | CRT Dresden
Weitere Informationen:
http://www.crt-dresden.de
http://www.crt-dresden.de/de/presse-oeffentlichkeit/pressemitteilungen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik

Neue Perspektiven durch gespiegelte Systeme

05.12.2016 | Physik Astronomie

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie