Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen lässt Blau nach Banane duften: Taufliegen-Larven können Licht riechen

21.05.2010
Frontiers in Neuroscience Behavior: Bochumer Forscher beobachten neuronales Netz

Bochumer Wissenschaftlern ist es gelungen, Taufliegen-Larven genetisch so zu verändern, dass sie blaues Licht riechen können. Die Forscher können einzelne der 28 Riech-Nervenzellen der Larven für diese Wahrnehmung aktivieren. Für die Tiere, die Licht normalerweise meiden, riecht blaues Licht dann nach Banane, Marzipan oder Klebstoff – alles Duftstoffe, die in verfaulendem Obst verkommen und für Fliegenlarven attraktiv sind. Blaulicht finden sie dann entsprechend anziehend.

Die Bochumer und Göttinger Forscher um Prof. Dr. Klemens Störtkuhl versprechen sich davon Einsichten in die Verschaltung und die Funktionsweise des Gehirns. Sie berichten in der Internationalen Zeitschrift Frontiers in Neuroscience Behavior.

Licht riecht lecker

Die Riech-Nervenzellen der nur einen Millimeter kleinen genetisch veränderten Fliegenlarven sind alle in der Lage, das entsprechende Protein herzustellen, das durch Licht aktiviert wird. Welche der 28 Zellen schließlich licht-empfindlich wird, können die Forscher mit Hilfe von genetischen Markern frei wählen. „Wir konnten sowohl Zellen aktivieren, die normalerweise abstoßende Düfte wahrnehmen, was eine Schreckreaktion bei den Tieren auslöst, als auch solche, die attraktive Düfte wahrnehmen, wie Banane, Marzipan oder Klebstoff“, erklärt Prof. Störtkuhl. Die aktivierten Nervenzellen senden bei Bestrahlung mit blauem Licht der Wellenlänge 480nm ein elektrisches Signal – sie feuern. Die Larve hat so den Eindruck, Düfte wahrzunehmen. Das Experiment zeigt, dass sich Larven, bei denen Nerven-Zellen, die für attraktive Duftstoffe zuständig sind, lichtempfindlich gemacht wurden, auf das Licht zu bewegen, während genetisch unveränderte Larven Licht generell meiden.

Tiere werden nicht verletzt

Die Forscher können den Effekt außerdem elektrophysiologisch messen. Dünne Elektroden können das Signal der Licht-aktivierten Nervenzellen detektieren. So lässt sich die Verarbeitung des Nervensignals bis ins Gehirn weiterverfolgen und somit lassen sich neuronale Netze nicht-invasiv beobachten. „Der große Vorteil dieser Technik besteht darin, dass wir am lebenden Tier Tests durchführen können, ohne es zu verletzen“, sagt Prof. Störtkuhl. Die Forscher versprechen sich mit dieser neuen Technik weitere Einblicke in die Verschaltung und die Funktionsweise des Gehirns. Der Geruchssinn funktioniert bei den genetisch veränderten Fliegenlarven übrigens normal.

Gleiches Prinzip auch bei anderen Tieren

In weiteren Studien wollen die Forscher nach demselben Prinzip auch erwachsene Taufliegen mit den photoaktivierbaren Proteinen ausstatten, um in ihrem Gehirn einzelne Nervenzellen gezielt anregen zu können. Die hier erfolgreich eingesetzte Methode werden nun auch in anderen Laboren u.a. dann der RUB bei Mäusen etabliert werden, um ähnliche Fragestellungen beantworten zu können.

Titelaufnahme

Bellmann D, Richardt A, Freyberger R, Nuwal N, Schwärzel M, Fiala A and Störtkuhl KF (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveales the neuronal basis of odor-aversion behavior. Front. Behav. Neurosci. 4:27. doi:10.3389/fnbeh.2010.00027, http://frontiersin.org/neuroscience/behavioralneuroscience/paper/

10.3389/fnbeh.2010.00027/

Weitere Informationen

Prof. Dr. Klemens Störtkuhl, Lehrstuhl Zellphysiologie, AG Sinnesphysiologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25838, E-Mail: klemens.stoertkuhl@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics