Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen bringt Zähne in Form

05.08.2010
Keine gesunden Zähne ohne dieses Gen: Wird bei der Zahnbildung das so genannte Jagged2-Gen deaktiviert und so der Notch-Signalweg unterbrochen, sind Missbildungen der Zahnkronen und fehlendes Zahnschmelz die Folgen. Da dieser Signalweg bei der Entwicklung von allen Geweben und Organen beteiligt ist, sind diese Erkenntnisse von Forschenden der Universität Zürich von weiter reichender Bedeutung.

Mittels Signalwege reagieren Zellen auf äussere Signale. Einer der wichtigsten und am weitesten verbreiteten Signalwege ist der Notch-Signalweg. Er ist evolutionsgeschichtlich mit grosser Konstanz überliefert, und er ist bei der Entwicklung aller Organe und Gewebe in tierischen und in menschlichen Embryonen beteiligt.

Benachbarten Zellen ermöglicht der Notch-Signalweg, verschiedene Formen anzunehmen. So kontrollieren die über Notch-Rezeptoren zwischen nachbarschaftlichen Zellen ausgetauschten Signale die Formung, Entwicklung und Ausbildung von Organen. Auch die Formung und Ausdifferenzierung der Zähne wird von Notch-Rezeptoren kontrolliert und beeinflusst.

Die Forschergruppe um Thimios Mitsiadis, Professor für Orale Biologie der Universität Zürich, hat nun anhand von Mäusen zeigen können, dass das Jagged2-Gen unabdingbar ist für die gesunde Entwicklung der Zähne. Wird dieses Gen nämlich deaktiviert und der Notch-Signalweg so unterbrochen, sind gravierende Missbildungen die Folge: Die Zahnkronen der Molaren (Mahlzähne) waren bei den entsprechend mutierten Mäusen deformiert, und es formten sich zusätzliche Spitzen. Bei den Schneidezähnen waren Zellteilung und Zahnschmelzbildung blockiert.

Biozähne: Ein Ziel der Stammzellenforschung

Den Notch-Signalweg zu verstehen und die Gene zu kennen, welche Form und Gestalt von Gewebe und Organen steuern, ist für viele Bereiche bedeutungsvoll. Auf dem Gebiet der Zahnmedizin verweist Thimios Mitsiadis auf den grossen Nutzen, den dieses Wissen insbesondere für die Stammzellenforschung hat: Denn das Ziel sei hier, das Potential von Stammzellen nicht nur für die Reparatur von Zähnen zu nutzen, sondern für die Herstellung gänzlich neuer Zähne – so genannten Biozähnen. Benötigt werden hierfür Kenntnisse der genauen genetischen Mechanismen, welche die Zahnform bestimmen. Einen neuen Zahn zu generieren, dessen Form den individuellen Patientenbedürfnissen angepasst ist, ist heute noch nicht möglich. Eine kombinierte Lösung aber ist bereits mit dem heutigen Wissensstand denkbar, wie Mitsiadis ausführt: «Eine Kombination von Stammzellen mit künstlichen Stützgerüsten könnte eine Lösung für dieses Problem sein.»

Literatur:
Thimios A. Mitsiadis, Daniel Graf , Hansueli Luder, Thomas Gridley, Gilles Bluteau: BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation, Development, Vol. 137 / Issue 18, 2010, doi:10.1242/dev.049528
Kontakt:
Prof. Thimios Mitsiadis 
Direktor des Instituts für Orale Biologie am Zentrum für Zahn-, Mund- und Kieferheilkunde (ZZMK) der Medizinischen Fakultät der Universität Zürich 


thimios.mitsiadis@zzmk.uzh.ch, Telefon: 044 634 33 90 oder 
044 634 32 78 (Sekretariat)

Website: http://www.dent.uzh.ch/ob.html

Beat Müller | idw
Weitere Informationen:
http://www.dent.uzh.ch/ob.html
http://www.mediadesk.uzh.ch/articles/2010/gen-bringt-zaehne-in-form.html
http://www.mediadesk.uzh.ch/articles/2010/gen-bringt-zaehne-in-form_en.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit