Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gemeinsam Fließen statt einsam Hüpfen - Neutronen untermauern neue Theorie über Bewegung in der Zellmembran

22.02.2010
Moleküle in einer Zellmembran bewegen sich fließend im Verbund statt als Einzelgänger in frei werdende Leerstellen zu hüpfen.

Das haben Sebastian Busch und Dr. Tobias Unruh am Neutronenspektrometer TOFTOF (time-of-flight time-of-flight) an der Neutronenquelle der Technischen Universität München (TUM) mit Daten belegt. Ihre Messungen, die sie jetzt in der renommierten Fachzeitschrift "Journal of the American Chemical Society" veröffentlicht haben, klären ein jahrzehntelanges Rätsel und untermauern erstmals experimentell eine neue Theorie der Molekülbewegung.

Immer wieder sahen sich Sebastian Busch und der Betreuer seiner Doktorarbeit an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM, Tobias Unruh, eine Simulation der Molekülbewegungen in einem Film auf YouTube an: "Die hüpfen ja gar nicht!" Und genau das behaupten auch die finnischen Biophysiker um Ilpo Vattulainen, die die Zellmembran per Computer simuliert und die Simulation auf YouTube gestellt haben.

Biophysiker haben jahrelang an ein falsches Modell geglaubt: Statt sich hüpfend einzeln von Leerstelle zu Leerstelle vorwärts zu bewegen, fließen die Phospholipide der Membran im Verbund. Jahrzehntelang gab es einen Streit zwischen den Wissenschaftlern, die Zellmembranbewegungen unter dem Mikroskop im Mikrometermaßstab beobachteten und den Neutronenstreuern, die die Molekülbewegung im Nanometerbereich vermessen können. Unter dem Mikroskop sah es so aus, als ob sich die Phospholipide sehr langsam in der Zellmembran bewegten, mit Neutronen wurden Bewegungen gemessen, die 100 Mal so schnell waren. Diesen scheinbaren Widerspruch erklärte man schließlich mit der Theorie, dass sich die Moleküle in einem Käfig aus den benachbarten Molekülen eingeschlossen so lange schnell hin und her bewegen, bis sich ein freier Platz bietet, in den das Molekül hinein hüpfen kann. Weil derartige Sprünge relativ selten auftreten, sieht man im Mikrometermaßstab eine langsamere Bewegung, so die Theorie.

"Nie hat jemand diese Theorie des Hüpfens mit Messungen belegen können", sagt der Chemiker Tobias Unruh. Auch Sebastian Busch wusste nicht, wie er seine Messungen an einer Phospholipidmembran am Neutronenspektrometer TOFTOF interpretieren sollte. Die Daten passten einfach nicht zum Modell. Da sah er die Simulation der finnischen Biophysiker, und informierte sich genauer vor Ort an der Universität in Helsinki. Der 27-Jährige, der am Lehrstuhl von Professor Dr. Winfried Petry im Physik-Department der TUM promoviert, reizte daraufhin bei ergänzenden Messungen die Leistungsfähigkeit des Spektrometers in Garching voll aus. "Da ist mir klar geworden, dass ich die Theorie der Finnen mit Daten untermauern kann", sagt Sebastian Busch. Schließlich konnte er die fließende Bewegung der Moleküle mit seinen Experimenten belegen. Die Zellmembranmoleküle bewegen sich dabei ähnlich wie Personen in einer Menschenmasse: Nur wenn mehrere im Verbund in eine Richtung drängen, kommt auch das Individuum vorwärts. Ein einsames Hüpfen der Moleküle gibt es also nicht, nur ein gemeinsames Fließen.

Als Probe untersuchte der Physiker ein typisches Phospholipid, Dimyristoylphosphatidylcholin (DMPC), hydriert mit schwerem Wasser. Die Bewegung der Zellmembran wurde in Zeitabständen von 35 bis 1000 Billionstel Sekunden bei 30 °C beobachtet. Im Spektrometer TOFTOF werden Neutronen mit einer genauestens bekannten Geschwindigkeit ausgewählt. Sie treffen auf die Probe und interagieren mit den Atomkernen. Wenn diese in Bewegung sind, ändern die Neutronen ihre Geschwindigkeit, was in einem Detektor gemessen wird. "Wir haben hier weltweit das einzige Spektrometer, das mit einer so großen Genauigkeit diese kleinen Bewegungen auf der Nanoskala messen kann", sagt Tobias Unruh.

Nun werden Tobias Unruh und Sebastian Busch untersuchen, wie sich die Bewegungen der Phospholipide verändern, wenn sie verschiedene Stoffe beimengen. Solche Mischungen werden in Arzneimitteln verwendet. Geeignete Zusätze können die Haltbarkeit der Stoffe drastisch erhöhen. Die TUM-Wissenschaftler interessiert vor allem, welchen Einfluss die Molekülbewegungen auf diesen stabilisierenden Effekt haben. "Wenn wir den Stabilisierungsmechanismus im Detail verstehen", hofft Tobias Unruh, "können zukünftig für die jeweilige Anwendung optimierte Mischungen vorgeschlagen werden."

Originalpublikation:
Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering, S. Busch, C. Smuda, L.C. Pardo Soto, T. Unruh
Journal of the American Chemical Society, Publication Date (Web): February 17, 2010

DOI: 10.1021/ja907581s - Link: http://pubs.acs.org/doi/abs/10.1021/ja907581s

Kontakt:
Dr. Tobias Unruh
Technische Universität München
Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, 85748 Garching
Tel: +49 89 289 14735
E-Mail: tobias.unruh@frm2.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.frm2.tum.de/wissenschaft/spektrometer/toftof/index.html
http://pubs.acs.org/doi/abs/10.1021/ja907581s
http://www.youtube.com/watch?v=Gzg357buRh8

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics