Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gemeinsam Fließen statt einsam Hüpfen - Neutronen untermauern neue Theorie über Bewegung in der Zellmembran

22.02.2010
Moleküle in einer Zellmembran bewegen sich fließend im Verbund statt als Einzelgänger in frei werdende Leerstellen zu hüpfen.

Das haben Sebastian Busch und Dr. Tobias Unruh am Neutronenspektrometer TOFTOF (time-of-flight time-of-flight) an der Neutronenquelle der Technischen Universität München (TUM) mit Daten belegt. Ihre Messungen, die sie jetzt in der renommierten Fachzeitschrift "Journal of the American Chemical Society" veröffentlicht haben, klären ein jahrzehntelanges Rätsel und untermauern erstmals experimentell eine neue Theorie der Molekülbewegung.

Immer wieder sahen sich Sebastian Busch und der Betreuer seiner Doktorarbeit an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM, Tobias Unruh, eine Simulation der Molekülbewegungen in einem Film auf YouTube an: "Die hüpfen ja gar nicht!" Und genau das behaupten auch die finnischen Biophysiker um Ilpo Vattulainen, die die Zellmembran per Computer simuliert und die Simulation auf YouTube gestellt haben.

Biophysiker haben jahrelang an ein falsches Modell geglaubt: Statt sich hüpfend einzeln von Leerstelle zu Leerstelle vorwärts zu bewegen, fließen die Phospholipide der Membran im Verbund. Jahrzehntelang gab es einen Streit zwischen den Wissenschaftlern, die Zellmembranbewegungen unter dem Mikroskop im Mikrometermaßstab beobachteten und den Neutronenstreuern, die die Molekülbewegung im Nanometerbereich vermessen können. Unter dem Mikroskop sah es so aus, als ob sich die Phospholipide sehr langsam in der Zellmembran bewegten, mit Neutronen wurden Bewegungen gemessen, die 100 Mal so schnell waren. Diesen scheinbaren Widerspruch erklärte man schließlich mit der Theorie, dass sich die Moleküle in einem Käfig aus den benachbarten Molekülen eingeschlossen so lange schnell hin und her bewegen, bis sich ein freier Platz bietet, in den das Molekül hinein hüpfen kann. Weil derartige Sprünge relativ selten auftreten, sieht man im Mikrometermaßstab eine langsamere Bewegung, so die Theorie.

"Nie hat jemand diese Theorie des Hüpfens mit Messungen belegen können", sagt der Chemiker Tobias Unruh. Auch Sebastian Busch wusste nicht, wie er seine Messungen an einer Phospholipidmembran am Neutronenspektrometer TOFTOF interpretieren sollte. Die Daten passten einfach nicht zum Modell. Da sah er die Simulation der finnischen Biophysiker, und informierte sich genauer vor Ort an der Universität in Helsinki. Der 27-Jährige, der am Lehrstuhl von Professor Dr. Winfried Petry im Physik-Department der TUM promoviert, reizte daraufhin bei ergänzenden Messungen die Leistungsfähigkeit des Spektrometers in Garching voll aus. "Da ist mir klar geworden, dass ich die Theorie der Finnen mit Daten untermauern kann", sagt Sebastian Busch. Schließlich konnte er die fließende Bewegung der Moleküle mit seinen Experimenten belegen. Die Zellmembranmoleküle bewegen sich dabei ähnlich wie Personen in einer Menschenmasse: Nur wenn mehrere im Verbund in eine Richtung drängen, kommt auch das Individuum vorwärts. Ein einsames Hüpfen der Moleküle gibt es also nicht, nur ein gemeinsames Fließen.

Als Probe untersuchte der Physiker ein typisches Phospholipid, Dimyristoylphosphatidylcholin (DMPC), hydriert mit schwerem Wasser. Die Bewegung der Zellmembran wurde in Zeitabständen von 35 bis 1000 Billionstel Sekunden bei 30 °C beobachtet. Im Spektrometer TOFTOF werden Neutronen mit einer genauestens bekannten Geschwindigkeit ausgewählt. Sie treffen auf die Probe und interagieren mit den Atomkernen. Wenn diese in Bewegung sind, ändern die Neutronen ihre Geschwindigkeit, was in einem Detektor gemessen wird. "Wir haben hier weltweit das einzige Spektrometer, das mit einer so großen Genauigkeit diese kleinen Bewegungen auf der Nanoskala messen kann", sagt Tobias Unruh.

Nun werden Tobias Unruh und Sebastian Busch untersuchen, wie sich die Bewegungen der Phospholipide verändern, wenn sie verschiedene Stoffe beimengen. Solche Mischungen werden in Arzneimitteln verwendet. Geeignete Zusätze können die Haltbarkeit der Stoffe drastisch erhöhen. Die TUM-Wissenschaftler interessiert vor allem, welchen Einfluss die Molekülbewegungen auf diesen stabilisierenden Effekt haben. "Wenn wir den Stabilisierungsmechanismus im Detail verstehen", hofft Tobias Unruh, "können zukünftig für die jeweilige Anwendung optimierte Mischungen vorgeschlagen werden."

Originalpublikation:
Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering, S. Busch, C. Smuda, L.C. Pardo Soto, T. Unruh
Journal of the American Chemical Society, Publication Date (Web): February 17, 2010

DOI: 10.1021/ja907581s - Link: http://pubs.acs.org/doi/abs/10.1021/ja907581s

Kontakt:
Dr. Tobias Unruh
Technische Universität München
Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, 85748 Garching
Tel: +49 89 289 14735
E-Mail: tobias.unruh@frm2.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.frm2.tum.de/wissenschaft/spektrometer/toftof/index.html
http://pubs.acs.org/doi/abs/10.1021/ja907581s
http://www.youtube.com/watch?v=Gzg357buRh8

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

nachricht Bakterieller Kontrollmechanismus zur Anpassung an wechselnde Bedingungen
13.12.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie