Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gemeinsam an einem Strang ziehen - Forscher klären wichtigen Mechanismus der Muskelbildung auf

14.03.2014

Kontrahiert ein Muskel, arbeiten unzählige kleine Bausteine (Sarkomere) zusammen.

Sie sind in regelmäßigen Abständen hintereinander angeordnet – ähnlich wie Perlen auf einer Schnur. Wie diese Grundordnung beim Muskelaufbau zustande kommt, konnten Forscher am Max-Planck-Institut für Biochemie in München-Martinsried nun erstmals aufzeigen.


Stehen Muskeln (grün) und Sehnen (rot) unter Spannung, ordnen sich die einzelnen Muskelfibrillen-Bausteine (Sarkomere, rechts im Bild, grün eingefärbt) wie eine Perlenschnur hintereinander an.

Foto: Manuela Weitkunat © MPI für Biochemie

„Mechanische Spannung ist der entscheidende Auslöser“, erklärt Frank Schnorrer, Forschungsgruppenleiter am MPI für Biochemie. „Fehlt sie, entstehen nur ungeordnete Strukturen und keine aus Sarkomeren aufgebauten Muskelfibrillen. Solche Muskeln sind völlig funktionslos.“ Die Ergebnisse der Wissenschaftler wurden jetzt in Current Biology veröffentlicht.

Um eine gewünschte Körperbewegung zu erreichen, ziehen kontrahierende Skelettmuskeln am Körperskelett. Für eine effiziente Muskel- und Skelettbewegung ist es wichtig, dass der Muskel sich nur entlang einer definierten Achse zusammenzieht – für eine Beinbewegung zum Beispiel entlang des Oberschenkels.

Das wird erreicht, indem die aus Sarkomeren aufgebauten Muskelfibrillen durch den gesamten Muskel laufen. An den Muskelenden sind die Fibrillen fest mit den Sehnen verbunden, die ihrerseits am Skelett verankert sind. "So wird die gesamte Muskelkraft auf das Skelett übertragen", erklärt Frank Schnorrer. Wie aber kann der Muskel eine solch komplexe Architektur aufbauen und seine einzelnen Sarkomere regelmäßig aneinanderreihen? 

Diese Fragestellung untersuchten Doktorandin Manuela Weitkunat und Wissenschaftlerin Aynur Kaya-Çopur an der Taufliege Drosophila melanogaster, im Volksmund auch Fruchtfliege genannt. Sie konnten zeigen, dass die Flugmuskeln der Fliege unmittelbar nach der Verbindung zu den Sehnen eine mechanische Spannung aufbauen.

Diese verläuft durch das ganze Muskel-Sehnen-Skelettsystem und entsteht bereits vor der Bildung der einzelnen Sarkomere. Erst durch diese Spannungsachse weiß der Muskel, wie er seine Sarkomere anordnen muss.

Ohne Spannung entsteht Chaos

Die Wissenschaftler der Forschungsgruppe Muskeldynamik konnten den Verbindungsaufbau von Flugmuskeln zu den Sehnen durch eine gezielte Genveränderung in der Fruchtfliege blockieren. In diesen veränderten Fliegen konnten die Muskeln keine in Fibrillen angeordneten Sarkomere mehr aufbauen.

Chaotische Strukturen entstanden. Um den Einfluss von mechanischer Spannung direkt zu testen, unterbrachen die Forscher diese, indem sie Sehnen und Muskeln mit Hilfe eines Lasers voneinander trennten. Dies führte ebenfalls zu einem starken Defekt der Fibrillen und Sarkomer Entstehung.

„Ausgehend von diesen Resultaten schlagen wir ein neues Modell für die Muskelfibrillenbildung vor, das auf einer selbstständigen und gleichzeitigen Anordnung der einzelnen Sarkomer-Bausteine basiert“, erklärt Frank Schnorrer. „Ist ein bestimmtes Spannungsniveau erreicht, wird die Ausrichtung ausgelöst. Wenn die Spannung fehlt, wissen die einzelnen Komponenten nicht mehr, wo vorne und hinten ist, und ordnen sich chaotisch an.“

Da menschliche Muskeln ebenfalls aus Muskelfibrillen mit regelmäßig angeordneten Sarkomeren aufgebaut sind, sei ein ähnliches, spannungsgesteuertes Organisationsmodell für menschliche Skelettmuskeln wahrscheinlich, so die Forscher. 

Originalpublikation:
M. Weitkunat, A. Kaya-Çopur, S.W. Grill and and F. Schnorrer: Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Current Biology, March 13, 2014.
DOI: 10.1016/j.cub.2014.02.032

Kontakt:
Dr. Frank Schnorrer
Muskeldynamik
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: schnorrer@biochem.mpg.de
http://www.biochem.mpg.de/schnorrer

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/4132525/067_schnorrer_muskelentwicklung - vollständige Pressemitteilung
http://www.biochem.mpg.de/schnorrer - Webseite der Forschungsgruppe "Muskeldynamik" (Frank Schnorrer)

Anja Konschak | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

nachricht „Flora Incognita“ – Pflanzenbestimmung mit dem Smartphone
15.12.2017 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Immunsystem - Blutplättchen können mehr als bislang bekannt

15.12.2017 | Medizin Gesundheit

Moos verdoppelte mehrmals sein Genom

15.12.2017 | Biowissenschaften Chemie

Neues Epidemie-Management-System bekämpft Affenpocken-Ausbruch in Nigeria

15.12.2017 | Informationstechnologie