Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelgerüst des Lungenschleims hindert Nanopartikel am Durchkommen

23.10.2012
Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) und der Universität des Saarlandes haben die physikalischen Eigenschaften des Lungenschleims enträtselt

Sie fanden heraus, dass im Lungenschleim ein steifes Gelgerüst große, mit Flüssigkeit gefüllte Poren voneinander trennt und die Bewegung von Nanopartikeln über Porengrenzen hinweg verhindert.


Wie an den Gitterstäben eines Käfigs bleiben Nanopartikel an den steifen, dicken Gelstäben im Lungenschleim hängen.
Abbildung: Schneider/Kirch et al.


Gelgerüst des Lungenschleims
Bild: Kirch et al.

Die Ergebnisse vertiefen das Verständnis von Erkrankungen der Atmungsorgane, insbesondere von Infektionen, und unterstützen die Entwicklung neuer Medikamente zur Inhalation. Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler jetzt in der renommierten Fachzeitschrift Proceedings of the National Academy of Science (PNAS).

Schleim, auch „Mucus“ genannt, überzieht die innere Oberfläche unserer Atemwege. Das zähfließende Gel befeuchtet die Lunge und verhindert, dass Viren oder kleine Partikel wie Dieselruß ungehindert eindringen. Ungeklärt war bisher, wie weit sich solche Nanopartikel durch den Schleim der Lunge bewegen können. Wissenschaftliche Ergebnisse hierzu widersprachen sich. So konnte bisher auch nicht erklärt werden, warum bei der Entwicklung von Medikamenten, die inhaliert werden sollen, Wirkstoff-Nanoteilchen bisweilen nicht am anvisierten Wirkort in den Lungenzellen ankamen, sondern schlicht im Schleim stecken blieben.

Dies haben Pharmazeuten und Physiker jetzt in einer unter anderem von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Studie herausgefunden. An der Studie beteiligten sich Wissenschaftler des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS), einer Außenstelle des HZI, sowie Forscher der Saar-Uni, der Université Paris-Diderot und von Fresenius Medical Care Deutschland.

„Der Mucus der Lunge ist ein besonderes Gel. Er ist völlig anders gebaut als andere Gele“, erläutert Claus-Michael Lehr, Professor für Biopharmazie und Pharmazeutische Technologie der Saar-Uni und Leiter der Abteilung „Wirkstoff-Transport“ am HIPS. „Normale“ Gele besitzen eine Mikrostruktur, die einem filigranen Spinnennetz aus dünnen, feinsten Fäden gleicht, die kleine Poren umschließen. Beim Blick durchs Mikroskop wirkt der Lungenschleim dagegen wie ein Schwamm: Steife, dicke Gelstäbe trennen große, mit Flüssigkeit gefüllte Poren. „Diese Gerüstproteine werden Mucine genannt“, erklärt Professor Lehr.

Die Forscher haben jetzt bewiesen, dass Nanopartikel an diesen Strukturen wie an den Gitterstäben eines Käfigs hängen bleiben. Dass in vielen Untersuchungen die Nanopartikel im Schleim als sehr beweglich erschienen, erklärt sich daraus, dass bei diesen Forschungen im Nanometerbereich gearbeitet wurde: Die Partikel bewegen sich innerhalb einer Pore völlig ungehindert; erst wenn sie die einzelnen Poren zu überwinden versuchen, werden sie an den „Stäben“ ausgebremst.

„Unsere Ergebnisse helfen uns zu verstehen, wie Infektionskrankheiten der Atemwege entstehen und wie diese besser bekämpft werden können. Sie sind insbesondere eine wichtige Grundlage für die Entwicklung inhalativer Medikamente“, erklärt Professor Lehr. Hierbei muss nach den neuen Erkenntnissen berücksichtigt werden, wie die Wirkstoffe das Gelgerüst des Schleims überwinden können. Dafür kommen so genannte mucolytische Verfahren in Betracht, bei denen die Stäbe quasi durchschmolzen werden: Diese lösen sich vor dem Nanopartikel auf, lassen ihn passieren, und schmelzen hinter ihm wieder zusammen.

Die Experimentalphysiker der Saar-Uni um Professor Christian Wagner untermauerten die Annahme unter anderem mit der Optischen Pinzette. Sie erlaubt es, kleinste Teilchen mit gebündelten Laserstrahlen wie mit einer Pinzette anzufassen und zu bewegen. „Über die Laserstrahlen der Optischen Pinzette können wir die Kraft messen, die erforderlich ist, um das Teilchen im Gel zu bewegen. Das ermöglicht uns, Rückschlüsse über das Medium zu ziehen, durch das die Kugel bewegt wird“, erklärt Professor Wagner. „Wir konnten die Kugel mit gleichbleibender Kraft durch die flüssige Phase im Inneren der Pore ziehen – genauso wie in einem normalen Gel. Wenn aber die Kugel gegen die Porenwand, also auf die Gelstäbe des Schleims stieß, konnte der Laserstrahl sie nicht weiter bewegen“, erläutert Wagner.

Auch Versuche mit dem Rasterkraftmikroskop und weitere Experimente untermauern die These: So durchdrangen Eisen-Nanopartikel unter dem Einfluss eines magnetischen Kraftfeldes das „normale“ Vergleichsgel ohne Schwierigkeiten, den Lungenschleim aber nicht. Strukturanalysen des Schleims wurden mit Hilfe der so genannten Kryo-Elektronenmikroskopie von Wissenschaftlern der Fresenius Medical Care Deutschland durchgeführt.

Die Erkenntnisse über die spezielle Struktur des Lungenschleims werden – so erwarten die Forscher – die Entwicklung der nächsten Generation von Medikamenten gegen Erkrankungen der Atemwege beeinflussen.

(Gemeinsame Pressemitteilung des Helmholtz-Zentrums für Infektionsforschung und der Universität des Saarlandes)

Originalpublikation:
Julian Kirch, Andreas Schneider, Berengere Abou, Alexander Hopf, Ulrich F. Schäfer, Marc Schneider, Christian Schall, Christian Wagner und Claus-Michael Lehr
Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus
PNAS 2012

Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist eine Außenstelle des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig und wurde im Jahr 2009 vom HZI und der Universität des Saarlandes gegründet. Die Forscher suchen hier insbesondere nach neuen Wirkstoffen gegen Infektionskrankheiten, optimieren diese für die Anwendung am Menschen und erforschen, wie diese am besten durch den Körper zum Wirkort transportiert werden können.

Die Arbeitsgruppe „Wirkstoff-Transport“ erforscht die Verteilung von Arzneimitteln im Körper. Sie untersucht, wie Wirkstoffe biologische Barrieren überwinden können und sicher den vorgesehenen Wirkort erreichen. Dazu entwickelt sie unter anderem Nanotransport-Moleküle.

Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum für Infektionsforschung GmbH
Inhoffenstraße 7
D-38124 Braunschweig
Tel 0531 6181-1401
Fax 0531 6181-1499

Claudia Ehrlich | Helmholtz HZI
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen
27.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Zirkuläre RNA wird in Proteine übersetzt
27.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie