Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelbe Biotechnologie: Insekten-Gene im Hochdurchsatz mithilfe von Futterpflanzen erforschen

02.02.2012
Durch Verwendung viraler Vektoren können mittels RNAi Genfunktionen in Insekten innerhalb kurzer Zeit studiert werden

Gelbe Biotechnologie ist die Biotechnologie mit Insekten, analog zur grünen (Pflanze) und roten (Tiere) Biotechnologie. Wirkstoffe oder Gene aus Insekten werden charakterisiert und können für die Forschung oder die Anwendung in Landwirtschaft oder Medizin eingesetzt werden.


Die nicotinresistente Raupe des Tabakschwärmers Manduca sexta ist dank eines neuen, auf RNAi basierenden Verfahrens nun Versuchsobjekt für die Erforschung noch unbekannter Gen-Funktionen von Motten. Jan-Peter Kasper (mit freundlicher Genehmigung)

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie, Jena, verwenden jetzt ein Verfahren, mit dem sie die ökologische Forschung an Insekten voranbringen: Sie studieren Genfunktionen in Mottenraupen, indem sie mithilfe der RNA-Interferenz-Technologie (RNAi) Gene gezielt beeinflussen. RNAi wird induziert durch Raupenfraß an Pflanzen unter Verwendung viraler Vektoren. Die neue Methode, genannt "plant virus based dsRNA producing system" (VDPS), erlaubt einen höheren Probendurchsatz verglichen mit der Verwendung gentechnisch veränderter Pflanzen.

Natürliches Gift gegen Insektenfraß

Über 200.000 Insektenarten sind Pflanzenschädlinge. Sie sind auf das Grünfutter angewiesen und haben im Lauf der Evolution ihren Stoffwechsel darauf eingestellt, pflanzliche Schutzvorkehrungen - meist Giftstoffe, mit denen sie die Schädlinge loswerden wollen - wirkungslos zu machen. Die Betriebsanweisungen solcher Entgiftungsverfahren sind in verschiedenen Genen verborgen. Insekten haben eine enorme Vielfalt an Anpassungsmechanismen entwickelt und besetzen daher fast alle Lebensräume auf diesem Planeten - was sie für ökologische Studien interessant macht. Welche Insektenart befällt welche Pflanzenart? Welche Gift- oder Signalstoffe spielen eine Rolle?
Ist das Insekt an bestimmte Arten angepasst oder nutzt es unterschiedliche Pflanzenspezies? Für die Landwirtschaft ist interessant: Welche Gene sind es, dank derer sich Schädlinge wie beispielsweise Rapsglanzkäfer oder Maiswurzelbohrer auf ihren Wirtspflanzen so verheerend schadlos halten können? Die Kenntnis und das gezielte Abschalten solcher Entgiftungs-Gene mit der Folge, dass die Pflanzentoxine gegen den Schädling wirken können, ist bereits Forschungsgegenstand in der Pflanzenzüchtung. Erste Erfolge wurden schon vermeldet - dank Einsatz der RNAi-Technologie.

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie widmen sich einem bekannten pflanzlichen Giftstoff: Nicotin. Pflanzen der Art Nicotiana attenuata (Kojotentabak) setzen Nicotin gegen Fraßschädlinge ein, jedoch wirkt es nicht gegen ihren ärgsten Feind: die Raupen des Tabakschwärmers Manduca sexta. Das Insekt ist gegen das Alkaloid resistent, verantwortlich dafür sind Gene, die Nicotin abbauende Enzyme kodieren. Hierbei könnte es sich um so genannte CYP-Gene handeln, die für die Bildung von Cytochrom P450 Enzymen zuständig sind, denn deren Expression ist erhöht, sobald sich das Insekt dem Nicotin in seiner Nahrung aussetzt. Ian Baldwin und sein Team kennen die DNA-Sequenzen der CYP-Gene aus Manduca sexta und waren damit in der Lage, mithilfe der RNAi Technik diese Gene in den Raupen abzuschalten, indem sie CYP-Sequenzen in Pflanzen exprimierten und diese den Raupen als Nahrung anboten.

Insektengene abschalten durch Pflanzen

Die zum Abschalten von CYP Genen in Raupen erforderliche RNA-Interferenz (RNAi) wurde ausgelöst, indem rund 300 Basenpaare umfassende doppelsträngige RNA (dsRNA) in den Zellen von Tabakpflanzen gebildet wird. Durch Fressen an diesen Pflanzen gelangte die RNA in den Darm der Raupen. In den Experimenten trug die dsRNA Gen-Sequenzen von CYP6B46, einer speziellen Cytochrom P450 Oxidoreduktase des Tabakschwärmers. Die dsRNA wird im nächsten Schritt enzymatisch in kleine RNA-Abschnitte zerlegt, und ein spezieller Enzymkomplex namens RISC ("RNA-induced silencing complex"), der einzelne dieser RNA-Abschnitte aufnimmt, bindet an die Boten-RNA (mRNA) des CYP6B46-Gens und zerlegt sie derart, dass das Cytochrom P450-Enzym nicht mehr gebildet werden kann. "Wir waren begeistert von der hohen Spezifität dieser RNAi-Experimente. Denn die Überprüfung der mRNA Transkriptmengen eng verwandter CYP6-Gene ergab, dass ausschließlich das CYP6B46-Gen 'gesilenced', also abgeschaltet worden war. RNAi zeigte keinerlei Kollateralschäden", so Baldwin.

Interessant waren die Ergebnisse nach Verwendung verschiedener CYP-RNAi-Sonden: Junge Raupen, die dsRNA des Gens CYP4M3 mit der Nahrung aufgenommen hatten, nahmen innerhalb von 14 Tagen signifikant weniger an Gewicht zu als Raupen, die auf Vergleichspflanzen geschlüpft waren - wahrscheinlich eine Folge des Nicotingifts, dessen Wirkung durch das Abschalten des CYP-Gens wieder hergestellt worden war. Diese RNAi-Experimente waren mithilfe pflanzenviraler Vektoren durchgeführt worden. Im Gegensatz zu gentechnisch veränderten Tabakpflanzen, in denen CYP-dsRNA konstitutiv, also ständig erzeugt wird, wird mit der Vektor-Methode die dsRNA in Wildtyp-Tabakpflanzen transient, also nur übergangsweise, erzeugt. Beide Methoden erwiesen sich als praktikabel, wobei allerdings das "plant virus based dsRNA producing system (VDPS) einen viermal schnelleren Durchsatz von RNAi-Proben erlaubt. Mit der Etablierung der VDPS-Methode können jetzt viele noch unbekannte Funktionen verschiedener Insektengene, die für die Anpassung der Tiere an ihre Umwelt eine Rolle spielen, untersucht werden.
Noch unklar ist, wie genau die einzelnen Schritte des hier verwendeten RNAi-Mechanismus, angefangen durch Erzeugung von dsRNA in den Pflanzenzellen über deren Aufnahme in den Insektendarm beim Fressen der Blätter bis hin zum Abschalten von Entgiftungsgenen ablaufen müssen, um eine optimale Wirkung hervorzurufen. Ein Experiment lieferte Hinweise: Wird in Versuchspflanzen der enzymatische Schritt, der die dsRNA in kleine Abschnitte zerteilt, unterbunden, ist die Transkriptmenge des Entgiftungsgens stärker reduziert. Das "plant virus based dsRNA producing system" wirkt in Mottenraupen demnach besser, wenn diese die komplette, noch unzerteilte dsRNA in ihren Darm befördern, von wo aus dann der RNAi-Mechanismus startet. [JWK]

Originalveröffentlichung:
Kumar, P., Pandit, S.S., Baldwin, I.T.: Tobacco Rattle Virus vector: A rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE, DOI: 10.1371/journal.pone.0031347

Weitere Informationen:
Prof. Dr. Ian T. Baldwin: baldwin@ice.mpg.de, Tel.: +49 3641 75 1101

Bildmaterial:
Angela Overmeyer M.A., Tel. 03641 - 57 2110, overmeyer@ice.mpg.de
oder per Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie