Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geländegängige Flitzer - Abwehrzellen unterwegs

16.11.2009
Um Krankheitserreger auch an den entlegendsten Stellen des Körpers effektiv zu bekämpfen, müssen sich Abwehrzellen schnell und flexibel bewegen können.

Wissenschaftler vom Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München haben jetzt den Mechanismus entschlüsselt, mit dem sich diese wendigen Zellen auf verschiedenen Oberflächen fortbewegen.

"Wie bei einem Auto gibt es einen Motor, eine Kupplung und Räder, die für die nötige Reibung sorgen", erläutert Michael Sixt, Forschungsgruppenleiter am MPI für Biochemie. Die Arbeit entstand in Zusammenarbeit mit Kollegen vom MPI für Metallforschung in Stuttgart und wurde jetzt in Nature Cell Biology veröffentlicht.

Weiße Blutkörperchen, auch Leukozyten oder Immunzellen genannt, bekämpfen auf vielfältige Weise Infektionen im menschlichen Körper. Als Abwehrzellen sind sie sind in der Lage, in infizierte Gewebe einzudringen, Krankheitserreger zu erkennen und anschließend zu beseitigen. Auch körperfremde Strukturen und Trümmer körpereigener Zellen werden von ihnen entsorgt. Um dieser Aufgabe gerecht zu werden, bewegen sie sich bis zu 100-mal schneller als andere Zelltypen. Dabei folgen Immunzellen bestimmten Lockstoffen im Körper, die entweder von körpereigenen Zellen oder den Krankheitserregern selbst freigesetzt werden.

Energieübertragung auf molekularer Ebene
Um von der Stelle zu kommen, müssen Zellen zunächst einmal die nötige Energie in ihrem Inneren bilden. Diese Aufgabe übernimmt das Zellskelett, ein die Zelle durchspannendes Netzwerk aus Proteinbausteinen. Es kann sich ausdehnen und fingerartige Ausläufer bilden, diese aber auch wieder zurückziehen.

Doch diese Verformung allein reicht nicht aus, damit die Zelle sich bewegt. "Wie bei einem Auto muss die Energie des Motors auf die Straße übertragen werden", erläutert Dr. Sixt. "Eine Kupplung und Räder müssen her." Zu diesem Zweck trägt jede Zelle spezielle Zellanker, auch Integrine genannt, auf ihrer Oberfläche. Diese Proteine durchspannen die Hülle der Zellen und sind direkt mit dem Zellskelett verbunden. Auf der Außenseite können diese Zellanker an anderen Zellen und auch Gewebe haften und so eine Verbindung zur Außenwelt herstellen. "Die Verbindung zwischen Zellskelett und Integrin entspricht der Kupplung beim Auto", so Dr. Sixt, "die Verbindung zwischen Integrin und Außenwelt dem Greifen der Räder."

Abwehrzellen sind geländegängig
Dabei sind die Abwehrzellen jedoch nicht starr und unflexibel. Sie sind in der Lage sich jedem Untergrund anzupassen, so die Forscher. "Unsere Untersuchungen haben gezeigt, dass sich Leukozyten immer mit der gleichen Geschwindigkeit bewegen, egal ob sie auf rutschigem oder griffigem Substrat wandern", sagt Dr. Sixt. Möglich macht dies das enge Zusammenspiel von Reifen, Motor und Kupplung. Greifen die Zellanker auf rutschigem Untergrund nicht mehr zu 100 Prozent, erhöht sich die Drehzahl des Motors - das Zellskelett verändert sich schneller. Dadurch bleibt die Geschwindigkeit der Zellen gleich.

Auch punktuell auftretende Unebenheiten können die Zellen ausgleichen. Befindet sich eine Zelle mit einer Hälfte auf rutschigem und mit einer Hälfte auf griffigem Untergrund, passt sich das Zellskelett entsprechend lokal an - ähnlich wie bei einem Differentialgetriebe. "Die Wanderungsrichtung bestimmt somit ausschließlich der Lockstoff und dieser hält sich in seiner Ausbreitung genauso wenig an Gewebegrenzen und Unebenheiten wie der wandernde Leukozyt", schlussfolgert der Mediziner.

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de/sixt/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie