Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geländegängige Flitzer - Abwehrzellen unterwegs

16.11.2009
Um Krankheitserreger auch an den entlegendsten Stellen des Körpers effektiv zu bekämpfen, müssen sich Abwehrzellen schnell und flexibel bewegen können.

Wissenschaftler vom Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München haben jetzt den Mechanismus entschlüsselt, mit dem sich diese wendigen Zellen auf verschiedenen Oberflächen fortbewegen.

"Wie bei einem Auto gibt es einen Motor, eine Kupplung und Räder, die für die nötige Reibung sorgen", erläutert Michael Sixt, Forschungsgruppenleiter am MPI für Biochemie. Die Arbeit entstand in Zusammenarbeit mit Kollegen vom MPI für Metallforschung in Stuttgart und wurde jetzt in Nature Cell Biology veröffentlicht.

Weiße Blutkörperchen, auch Leukozyten oder Immunzellen genannt, bekämpfen auf vielfältige Weise Infektionen im menschlichen Körper. Als Abwehrzellen sind sie sind in der Lage, in infizierte Gewebe einzudringen, Krankheitserreger zu erkennen und anschließend zu beseitigen. Auch körperfremde Strukturen und Trümmer körpereigener Zellen werden von ihnen entsorgt. Um dieser Aufgabe gerecht zu werden, bewegen sie sich bis zu 100-mal schneller als andere Zelltypen. Dabei folgen Immunzellen bestimmten Lockstoffen im Körper, die entweder von körpereigenen Zellen oder den Krankheitserregern selbst freigesetzt werden.

Energieübertragung auf molekularer Ebene
Um von der Stelle zu kommen, müssen Zellen zunächst einmal die nötige Energie in ihrem Inneren bilden. Diese Aufgabe übernimmt das Zellskelett, ein die Zelle durchspannendes Netzwerk aus Proteinbausteinen. Es kann sich ausdehnen und fingerartige Ausläufer bilden, diese aber auch wieder zurückziehen.

Doch diese Verformung allein reicht nicht aus, damit die Zelle sich bewegt. "Wie bei einem Auto muss die Energie des Motors auf die Straße übertragen werden", erläutert Dr. Sixt. "Eine Kupplung und Räder müssen her." Zu diesem Zweck trägt jede Zelle spezielle Zellanker, auch Integrine genannt, auf ihrer Oberfläche. Diese Proteine durchspannen die Hülle der Zellen und sind direkt mit dem Zellskelett verbunden. Auf der Außenseite können diese Zellanker an anderen Zellen und auch Gewebe haften und so eine Verbindung zur Außenwelt herstellen. "Die Verbindung zwischen Zellskelett und Integrin entspricht der Kupplung beim Auto", so Dr. Sixt, "die Verbindung zwischen Integrin und Außenwelt dem Greifen der Räder."

Abwehrzellen sind geländegängig
Dabei sind die Abwehrzellen jedoch nicht starr und unflexibel. Sie sind in der Lage sich jedem Untergrund anzupassen, so die Forscher. "Unsere Untersuchungen haben gezeigt, dass sich Leukozyten immer mit der gleichen Geschwindigkeit bewegen, egal ob sie auf rutschigem oder griffigem Substrat wandern", sagt Dr. Sixt. Möglich macht dies das enge Zusammenspiel von Reifen, Motor und Kupplung. Greifen die Zellanker auf rutschigem Untergrund nicht mehr zu 100 Prozent, erhöht sich die Drehzahl des Motors - das Zellskelett verändert sich schneller. Dadurch bleibt die Geschwindigkeit der Zellen gleich.

Auch punktuell auftretende Unebenheiten können die Zellen ausgleichen. Befindet sich eine Zelle mit einer Hälfte auf rutschigem und mit einer Hälfte auf griffigem Untergrund, passt sich das Zellskelett entsprechend lokal an - ähnlich wie bei einem Differentialgetriebe. "Die Wanderungsrichtung bestimmt somit ausschließlich der Lockstoff und dieser hält sich in seiner Ausbreitung genauso wenig an Gewebegrenzen und Unebenheiten wie der wandernde Leukozyt", schlussfolgert der Mediziner.

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de/sixt/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie