Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnnervenzellen leisten Nachbarschaftshilfe

07.05.2009
RUB-Forscher beobachten Umorganisation nach einer Verletzung
Aktivitätsmessungen mit spannungsabhängigen Farbstoffen

Nach einer Verletzung der Netzhaut bekommen die entsprechenden Gehirnnervenzellen plötzlich keine Eingangssignale mehr. Untätig bleiben sie deshalb aber nicht: Sie empfangen Signale von ihren Nachbarzellen, verstärken sie und geben sie weiter. Dazu bilden sie in den ersten Wochen nach der Verletzung neue Netzwerke aus - zunächst testweise vorübergehende, später dann bleibende Verknüpfungen.

Diese Vorgänge konnten Forscher der Ruhr-Universität jetzt mit einer neuen Methode beobachten, bei der spannungsabhängige Farbstoffe zum Einsatz kommen. Sie leuchten auf, wenn Zellen elektrische Signale empfangen oder aussenden. Die Forscher berichten in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (PNAS).

Nervenzellen sehen um die Ecke

In der Großhirnrinde sind Nervenzellen engmaschig und weitreichend verknüpft: Man schätzt, dass die Gesamtlänge der Verbindungen zwischen den Nervenzellen in einem Kubikmillimeter grauer Gehirnsubstanz bis zu drei Kilometern entspricht. Jede Zelle erhält somit mehrere tausend Eingangssignale und sendet ebenso viele Ausgangssignale an zum Teil weitentfernte Neurone weiter. So breiten sich Erregungen rasch wellenförmig aus. Was passiert aber, wenn plötzlich durch eine Verletzung der Sinnesorgane Teile der üblichen Eingangssignale fehlen? "Da die Verschaltungen zwischen den Nervenzellen in frühen Phasen der Entwicklung gebildet und stabilisiert werden, hat man lange Zeit angenommen, dass das erwachsene Gehirn solche Verletzungen nicht kompensieren kann", so Dr. Dirk Jancke (Institut für Neuroinformatik).

In den vergangenen Jahrzehnten konnten Wissenschaftler jedoch nachweisen, dass auch das erwachsene Gehirn die Fähigkeit zu plastischen Veränderungen hat, wenn auch in begrenztem Umfang: Alte, nicht mehr gebrauchte Kontakte zwischen Zellen werden abgeschwächt oder gelöst, neue bilden sich. "Kortikale Nervenzellen die durch die Netzhautschädigung plötzlich keinen direkten Eingang mehr haben, können durch den Anschluss an ihre noch funktionstüchtigen weiter entfernten Nachbarn zumindest wieder um die Ecke sehen", so Dr. Jancke. Experimentell sichtbar wird dieser Prozess bereits wenige Wochen nach der Verletzung, wenn Aktivitätswellen aus der intakten Umgebung verstärkt in die betroffenen Bereiche vordringen.

Optische Messung mit spannungsabhängigen Farbstoffen

Ältere Messverfahren, die die elektrische Aktivität der Nervenzellen auswerten, können nur summierte Signale darstellen. Die neue Methode ist sensibler: Es erscheinen auch latente Eingangssignale fluoreszierend. "Mit unserem neuen bildgebenden Verfahren haben wir erstmals die lange vermutete fortschreitende Ausbreitung und Verstärkung von zunächst unterschwelligen Aktivitätswellen in die betroffenen Bereiche gezeigt", erklärt Dr. Jancke. Bei dem optischen Messverfahren werden graduelle synaptische Potentialänderungen, die bei Aktivität von Nervenzellen entstehen, als Änderungen der Intensität fluoreszenten Lichts registriert. Dabei wird ein Farbstoff genutzt, der in Zellwände eingebaut wird und proportional zur Spannung über der Zellwand Photonen aussendet. Ein hochauflösendes Kamerasystem detektiert diese Lichtsignale, die dann durch nachfolgende Rechenoperationen visualisiert werden können. Die Farbstoffe und die Grundlagen der Messtechnik wurden im Labor von Prof. Grinvald, Weizmann Institute of Science, Israel entwickelt. Während seiner zweijährigen Arbeiten in Israel, gelang Dr. Jancke die Darstellung von Aktivitätswellen in der visuellen kortikalen Sehrinde und erstmalig die Beschreibung ihrer Bedeutung für visuelle Wahrnehmungsprozesse (siehe auch http://www.pm.ruhr-uni-bochum.de/pm2004/msg00094.htm). Im Rahmen seiner Juniorprofessur "Kognitive Neurobiologie, Fakultät für Biologie und Biotechnologie", etablierte Dr. Jancke dieses neue bildgebende Verfahren an der RUB.

Fakultätsübergreifende Kooperation an der RUB

Die aktuelle Studie baut auf Arbeiten des RUB-Mediziners Prof. Dr. Ulf Eysel auf, einem der Pioniere und führenden Wissenschaftler auf dem Gebiet neuronaler Plastizität, die er in Zusammenarbeit mit dem Max-Planck Institut für Neurobiologie in München angefertigt hatte (siehe auch http://www.pm.rub.de/pm2008/msg00260.htm). Die Ergebnisse zeigten, dass sich nach einer kleinen punktförmigen Netzhaut-Verletzung in der Großhirnrinde von Mäusen dreimal so viele neue Nervenfortsätze, sog. "spines", bilden. Dabei wurden neu entstandene Zellkontakte oftmals wieder gelöst, bis sich schließlich stabile Verbindungen etabliert hatten. Es lag nahe, nun den Zusammenhang zwischen diesem massiven Umbau neuronaler Strukturen und den Veränderungen von Aktivitätsdynamiken in größeren Zellverbänden zu untersuchen. Ganna Palagina, Stipendiatin der International Graduate School (IGSN) an der Ruhr-Universität, machte diese Frage zum Thema ihrer Doktorarbeit. Für die aktuelle Studie, die sie an Ratten durchführte, pendelte sie über zwei Jahre lang zwischen zwei Arbeitsplätzen: einem im Labor der Abteilung für Neurophysiologie bei Prof. Eysel, in dem die genau lokalisierten Netzhautverletzungen erzeugt wurden, und dem zweiten im Optical Imaging Labor bei Dr. Jancke in der Biologie, um die optischen Messungen mit spannungsabhängigen Farbstoffen durchzuführen.

Titelaufnahme

Palagina G., Eysel U.T., Jancke D.: Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo. Proc. Nat. Acad. Sci. (USA), 6. May, 2009. doi:10.1073/pnas.0900068106

Weitere Informationen

Dr. Dirk Jancke, Kognitive Neurobiologie, Bernstein Group for Computational Neuroscience, Institut für Neuroinformatik, Ruhr-Universität Bochum, Tel. 0234/32-27845 (office), -24369 (lab); email: dirk.jancke@rub.de; homepage: http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/
http://www.pm.rub.de/pm2008/msg00260.htm

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten