Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn verschiedene Melodien lernen kann

06.06.2013
Verschiedene Melodien haben oft gemeinsame Passagen. Wenn wir uns an eine bestimmte Melodie erinnern, schaffen wir es aber mühelos, die Stücke trotzdem nicht zu verwechseln.

Wie solche sich überlappenden Sequenzen über Nervenzellen im Gehirn gelernt und ohne Verwechslung abgerufen werden können, erklären Wissenschaftler der Universität Bern anhand eines neuen mathematischen Modells.

Unser Gehirn ist in der Lage, Sequenzen von neuronalen Aktivitätsmustern im Millisekundenbereich abzuspeichern und wiederzugeben. So verlangt der Aufschlag eines Tennisprofis die präzise Abfolge von neuronaler Aktivität in der motorischen Hirnrinde, um den Ball schliesslich im richtigen Winkel zu treffen.

Durch Tausende von Wiederholungen werden Verbindungen zwischen den motorischen Nervenzellen über ihre Kontaktstellen, die Synapsen, «eingebrannt», welche dann die gewünschte Bewegung auslösen. Nach der allgemein akzeptierten Vorstellung werden Verbindungen von unmittelbar nacheinander aktivierten Nervenzellen gestärkt oder wie es die Hebb’sche Lernregel in griffigem Englisch verkürzt ausdrückt: «Fire together, wire together.»

Falls es nur eine einzige Sequenz zu lernen gibt, kann eine Nervenzelle nach der anderen aktiviert werden, und dazu wäre die Hebb’sche Regel ausreichend. Aber wie lernt das neuronale Netzwerk etwa zwei Sequenzen, jede mit einer Pause, um nach dieser die richtige Fortsetzung zu finden? Hier können zusätzliche Hintergrund-Neuronen helfen, welche eine solche Pause durch ihre Aktivität überbrücken.

Im Beispiel der Melodie zählen die Hintergrund-Neuronen in der Pause gewissermassen die Schläge und am Schluss weisen sie auf die passende Fortsetzung hin. Eine Lernregel jedoch, die geeignete Hintergrund-Neuronen aktiviert und etwa in eine unterbrochene Sequenz einbindet, war bis anhin nicht bekannt.

Johanni Brea, Walter Senn und Jean-Pascal Pfister vom Institut für Physiologie der Universität Bern haben nun im «Journal of Neuroscience» ein mathematisches Modell vorgeschlagen, welches die Hebb’sche Lernregel erweitert und für das Erlernen unterbrochener Sequenzen anwendbar ist.

Wichtig sind die Neuronen im Hintergrund

Ausgangspunkt der Theorie ist eine Unterscheidung von Vorder- und Hintergrund-Neuronen. Die Vordergrund-Neuronen repräsentieren die Aktivierungsmuster, die durch die Sequenz vorgegeben sind. Beim Tennisaufschlag ist die Sequenz durch motorische, bei der Melodie durch auditive neuronale Vordergrund-Aktivität gegeben. Während sich die Sequenz in den Vordergrund-Neuronen abspielt, sind in einer anfänglich zufälligen Reihenfolge auch Hintergrund-Neuronen aktiv. Diese lernen, die Abfolge der Vordergrund-Aktivität zu unterstützen.

Die synaptischen Verbindungen zu den Hintergrund-Neuronen dürfen aber nicht nach der Hebb’schen Regel angepasst werden, da sich sonst die zunächst zufälligen und womöglich falschen Abfolgen in den Hintergrund-Neuronen «einbrennen».

«Gemäss unserem vorgeschlagenen mathematischen Modell werden die synaptischen Veränderungen durch ein Signal moduliert, welches die Wirkung der Hintergrund- auf die Vordergrund-Aktivität abschätzt», erklärt Letztautor Jean-Pascal Pfister: Falls sich die aktuelle Hintergrund-Aktivität unterstützend auswirkt, wird die ursprüngliche Hebb’sche Lernregel angewandt – andernfalls wird das Vorzeichen der Lernregel umgekehrt und die Verbindung von sequenziell aktivierten Neuronen geschwächt. «Im Falle der Melodie bedeutet dies, dass innerhalb der Pause diejenige Hintergrund-Aktivität unterdrückt wird, die eine frühzeitige oder falsche Fortsetzung der Melodie auslösen würde», so der Berner Neurophysiologe.

Astrozyten könnten das übergeordnete Signal errechnen

Das Modell der Berner Forschenden macht experimentell direkt testbare Voraussagen. Am gleichen Institut wurde kürzlich nachgewiesen, dass Astrozyten, die bislang vor allem als Energielieferanten für Nervenzellen angesehen wurden, auch synaptische Verbindungsstärken verändern.

Da Astrozyten auf verschiedene Arten die Aktivität des umliegenden neuronalen Netzwerkes im Sekundenbereich widerspiegeln, könnten sie allenfalls die Abweichung von Hinter- und Vordergrund-Aktivität ermitteln und entsprechend das Vorzeichen der synaptischen Änderung modulieren – so wie das die theoretisch hergeleitete Lernregel voraussagt. «Wie genau dieses postulierte übergeordnete Signal die synaptischen Verbindungen anpasst, das kann nun durch Experimente herausgefunden werden», erklärt Jean-Pascal Pfister.
Quellenangabe:
Johanni Brea, Walter Senn und Jean-Pascal Pfister: Matching storage and recall in sequence learning with spiking neural networks. The Journal of Neuroscience, June, 5 June 2013, 33(23): 9565-9575; doi: 10.1523/​JNEUROSCI.4098-12.2013

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie