Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn verschiedene Melodien lernen kann

06.06.2013
Verschiedene Melodien haben oft gemeinsame Passagen. Wenn wir uns an eine bestimmte Melodie erinnern, schaffen wir es aber mühelos, die Stücke trotzdem nicht zu verwechseln.

Wie solche sich überlappenden Sequenzen über Nervenzellen im Gehirn gelernt und ohne Verwechslung abgerufen werden können, erklären Wissenschaftler der Universität Bern anhand eines neuen mathematischen Modells.

Unser Gehirn ist in der Lage, Sequenzen von neuronalen Aktivitätsmustern im Millisekundenbereich abzuspeichern und wiederzugeben. So verlangt der Aufschlag eines Tennisprofis die präzise Abfolge von neuronaler Aktivität in der motorischen Hirnrinde, um den Ball schliesslich im richtigen Winkel zu treffen.

Durch Tausende von Wiederholungen werden Verbindungen zwischen den motorischen Nervenzellen über ihre Kontaktstellen, die Synapsen, «eingebrannt», welche dann die gewünschte Bewegung auslösen. Nach der allgemein akzeptierten Vorstellung werden Verbindungen von unmittelbar nacheinander aktivierten Nervenzellen gestärkt oder wie es die Hebb’sche Lernregel in griffigem Englisch verkürzt ausdrückt: «Fire together, wire together.»

Falls es nur eine einzige Sequenz zu lernen gibt, kann eine Nervenzelle nach der anderen aktiviert werden, und dazu wäre die Hebb’sche Regel ausreichend. Aber wie lernt das neuronale Netzwerk etwa zwei Sequenzen, jede mit einer Pause, um nach dieser die richtige Fortsetzung zu finden? Hier können zusätzliche Hintergrund-Neuronen helfen, welche eine solche Pause durch ihre Aktivität überbrücken.

Im Beispiel der Melodie zählen die Hintergrund-Neuronen in der Pause gewissermassen die Schläge und am Schluss weisen sie auf die passende Fortsetzung hin. Eine Lernregel jedoch, die geeignete Hintergrund-Neuronen aktiviert und etwa in eine unterbrochene Sequenz einbindet, war bis anhin nicht bekannt.

Johanni Brea, Walter Senn und Jean-Pascal Pfister vom Institut für Physiologie der Universität Bern haben nun im «Journal of Neuroscience» ein mathematisches Modell vorgeschlagen, welches die Hebb’sche Lernregel erweitert und für das Erlernen unterbrochener Sequenzen anwendbar ist.

Wichtig sind die Neuronen im Hintergrund

Ausgangspunkt der Theorie ist eine Unterscheidung von Vorder- und Hintergrund-Neuronen. Die Vordergrund-Neuronen repräsentieren die Aktivierungsmuster, die durch die Sequenz vorgegeben sind. Beim Tennisaufschlag ist die Sequenz durch motorische, bei der Melodie durch auditive neuronale Vordergrund-Aktivität gegeben. Während sich die Sequenz in den Vordergrund-Neuronen abspielt, sind in einer anfänglich zufälligen Reihenfolge auch Hintergrund-Neuronen aktiv. Diese lernen, die Abfolge der Vordergrund-Aktivität zu unterstützen.

Die synaptischen Verbindungen zu den Hintergrund-Neuronen dürfen aber nicht nach der Hebb’schen Regel angepasst werden, da sich sonst die zunächst zufälligen und womöglich falschen Abfolgen in den Hintergrund-Neuronen «einbrennen».

«Gemäss unserem vorgeschlagenen mathematischen Modell werden die synaptischen Veränderungen durch ein Signal moduliert, welches die Wirkung der Hintergrund- auf die Vordergrund-Aktivität abschätzt», erklärt Letztautor Jean-Pascal Pfister: Falls sich die aktuelle Hintergrund-Aktivität unterstützend auswirkt, wird die ursprüngliche Hebb’sche Lernregel angewandt – andernfalls wird das Vorzeichen der Lernregel umgekehrt und die Verbindung von sequenziell aktivierten Neuronen geschwächt. «Im Falle der Melodie bedeutet dies, dass innerhalb der Pause diejenige Hintergrund-Aktivität unterdrückt wird, die eine frühzeitige oder falsche Fortsetzung der Melodie auslösen würde», so der Berner Neurophysiologe.

Astrozyten könnten das übergeordnete Signal errechnen

Das Modell der Berner Forschenden macht experimentell direkt testbare Voraussagen. Am gleichen Institut wurde kürzlich nachgewiesen, dass Astrozyten, die bislang vor allem als Energielieferanten für Nervenzellen angesehen wurden, auch synaptische Verbindungsstärken verändern.

Da Astrozyten auf verschiedene Arten die Aktivität des umliegenden neuronalen Netzwerkes im Sekundenbereich widerspiegeln, könnten sie allenfalls die Abweichung von Hinter- und Vordergrund-Aktivität ermitteln und entsprechend das Vorzeichen der synaptischen Änderung modulieren – so wie das die theoretisch hergeleitete Lernregel voraussagt. «Wie genau dieses postulierte übergeordnete Signal die synaptischen Verbindungen anpasst, das kann nun durch Experimente herausgefunden werden», erklärt Jean-Pascal Pfister.
Quellenangabe:
Johanni Brea, Walter Senn und Jean-Pascal Pfister: Matching storage and recall in sequence learning with spiking neural networks. The Journal of Neuroscience, June, 5 June 2013, 33(23): 9565-9575; doi: 10.1523/​JNEUROSCI.4098-12.2013

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Willkommen an Bord!

28.06.2017 | Veranstaltungsnachrichten

Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen

28.06.2017 | Energie und Elektrotechnik

Zeolith-Katalysatoren ebnen den Weg für dezentrale chemische Prozesse: Biosprit aus Abfällen

28.06.2017 | Verfahrenstechnologie