Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn verschiedene Melodien lernen kann

06.06.2013
Verschiedene Melodien haben oft gemeinsame Passagen. Wenn wir uns an eine bestimmte Melodie erinnern, schaffen wir es aber mühelos, die Stücke trotzdem nicht zu verwechseln.

Wie solche sich überlappenden Sequenzen über Nervenzellen im Gehirn gelernt und ohne Verwechslung abgerufen werden können, erklären Wissenschaftler der Universität Bern anhand eines neuen mathematischen Modells.

Unser Gehirn ist in der Lage, Sequenzen von neuronalen Aktivitätsmustern im Millisekundenbereich abzuspeichern und wiederzugeben. So verlangt der Aufschlag eines Tennisprofis die präzise Abfolge von neuronaler Aktivität in der motorischen Hirnrinde, um den Ball schliesslich im richtigen Winkel zu treffen.

Durch Tausende von Wiederholungen werden Verbindungen zwischen den motorischen Nervenzellen über ihre Kontaktstellen, die Synapsen, «eingebrannt», welche dann die gewünschte Bewegung auslösen. Nach der allgemein akzeptierten Vorstellung werden Verbindungen von unmittelbar nacheinander aktivierten Nervenzellen gestärkt oder wie es die Hebb’sche Lernregel in griffigem Englisch verkürzt ausdrückt: «Fire together, wire together.»

Falls es nur eine einzige Sequenz zu lernen gibt, kann eine Nervenzelle nach der anderen aktiviert werden, und dazu wäre die Hebb’sche Regel ausreichend. Aber wie lernt das neuronale Netzwerk etwa zwei Sequenzen, jede mit einer Pause, um nach dieser die richtige Fortsetzung zu finden? Hier können zusätzliche Hintergrund-Neuronen helfen, welche eine solche Pause durch ihre Aktivität überbrücken.

Im Beispiel der Melodie zählen die Hintergrund-Neuronen in der Pause gewissermassen die Schläge und am Schluss weisen sie auf die passende Fortsetzung hin. Eine Lernregel jedoch, die geeignete Hintergrund-Neuronen aktiviert und etwa in eine unterbrochene Sequenz einbindet, war bis anhin nicht bekannt.

Johanni Brea, Walter Senn und Jean-Pascal Pfister vom Institut für Physiologie der Universität Bern haben nun im «Journal of Neuroscience» ein mathematisches Modell vorgeschlagen, welches die Hebb’sche Lernregel erweitert und für das Erlernen unterbrochener Sequenzen anwendbar ist.

Wichtig sind die Neuronen im Hintergrund

Ausgangspunkt der Theorie ist eine Unterscheidung von Vorder- und Hintergrund-Neuronen. Die Vordergrund-Neuronen repräsentieren die Aktivierungsmuster, die durch die Sequenz vorgegeben sind. Beim Tennisaufschlag ist die Sequenz durch motorische, bei der Melodie durch auditive neuronale Vordergrund-Aktivität gegeben. Während sich die Sequenz in den Vordergrund-Neuronen abspielt, sind in einer anfänglich zufälligen Reihenfolge auch Hintergrund-Neuronen aktiv. Diese lernen, die Abfolge der Vordergrund-Aktivität zu unterstützen.

Die synaptischen Verbindungen zu den Hintergrund-Neuronen dürfen aber nicht nach der Hebb’schen Regel angepasst werden, da sich sonst die zunächst zufälligen und womöglich falschen Abfolgen in den Hintergrund-Neuronen «einbrennen».

«Gemäss unserem vorgeschlagenen mathematischen Modell werden die synaptischen Veränderungen durch ein Signal moduliert, welches die Wirkung der Hintergrund- auf die Vordergrund-Aktivität abschätzt», erklärt Letztautor Jean-Pascal Pfister: Falls sich die aktuelle Hintergrund-Aktivität unterstützend auswirkt, wird die ursprüngliche Hebb’sche Lernregel angewandt – andernfalls wird das Vorzeichen der Lernregel umgekehrt und die Verbindung von sequenziell aktivierten Neuronen geschwächt. «Im Falle der Melodie bedeutet dies, dass innerhalb der Pause diejenige Hintergrund-Aktivität unterdrückt wird, die eine frühzeitige oder falsche Fortsetzung der Melodie auslösen würde», so der Berner Neurophysiologe.

Astrozyten könnten das übergeordnete Signal errechnen

Das Modell der Berner Forschenden macht experimentell direkt testbare Voraussagen. Am gleichen Institut wurde kürzlich nachgewiesen, dass Astrozyten, die bislang vor allem als Energielieferanten für Nervenzellen angesehen wurden, auch synaptische Verbindungsstärken verändern.

Da Astrozyten auf verschiedene Arten die Aktivität des umliegenden neuronalen Netzwerkes im Sekundenbereich widerspiegeln, könnten sie allenfalls die Abweichung von Hinter- und Vordergrund-Aktivität ermitteln und entsprechend das Vorzeichen der synaptischen Änderung modulieren – so wie das die theoretisch hergeleitete Lernregel voraussagt. «Wie genau dieses postulierte übergeordnete Signal die synaptischen Verbindungen anpasst, das kann nun durch Experimente herausgefunden werden», erklärt Jean-Pascal Pfister.
Quellenangabe:
Johanni Brea, Walter Senn und Jean-Pascal Pfister: Matching storage and recall in sequence learning with spiking neural networks. The Journal of Neuroscience, June, 5 June 2013, 33(23): 9565-9575; doi: 10.1523/​JNEUROSCI.4098-12.2013

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise