Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn im Schwebezustand: Einflüsse der Epigenetik auf die Hirnentwicklung

03.02.2016

Göttinger Wissenschaftler des CNMPB, MPIBPC und DZNE beschreiben molekularen Mechanismus, der umfassende epigenetische Programme in der Hirnentwicklung kontrolliert. Veröffentlicht in der Fachzeitschrift CELL REPORTS.

Die Bildung von Nervenzellen, die sogenannte Neurogenese, läuft beim Menschen und allen anderen Säugern während der Hirnentwicklung auf Hochtouren und ist dann so gut wie abgeschlossen. Allein im Vorderhirn entstehen in bestimmten Regionen auch im erwachsenen Gehirn noch neue Nervenzellen.


Chromatin-Umbau und Funktion des BAF-Komplexes in der Entwicklung des Vorderhirns. (A) In einem Energieverbrauchenden Prozess beeinflusst der BAF-Multiproteinkomplex durch Anlagerung die Chromatin-Struktur. Die lokale Umwandlung von inaktivem Heterochromatin in die locker gepackte aktive Form (Euchromatin) ermöglicht die Anlagerung von Transkriptionsfaktoren an einzelne Gene und deren Aktivierung bzw. Deaktivierung. (B) Die Proteinuntereinheiten BAF155 und BAF170 dienen als Grundgerüst des gesamten BAF-Komplexes. Mutanten, denen diese Faktoren fehlen, weisen eine massiv gestörte Entwicklung des Vorderhirns auf. Quelle: Tuoc / CNMPB

Schlüsselmechanismen der Neurogenese sind die sogenannte Epigenetik und der Umbau der Chromatin-Struktur (chromatin remodeling). Sie kontrollieren die Expression von Genen und fördern die Differenzierung von Nervenzellen aus Vorläuferzellen, den neuronalen Stammzellen.

Wie genau das Zusammenspiel von Epigenetik und Chromatin-Umbau die Differenzierung der Stammzellen reguliert, ist bisher noch wenig verstanden. Detailkenntnisse könnten helfen, Strategien zu entwickeln, um die Neubildung von Nervenzellen gezielt anzuregen. Damit eröffnen sich neue Möglichkeiten für die Behandlung von Erkrankungen, bei denen das Gehirn geschädigt ist.

Wissenschaftlern des Exzellenzclusters und des DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG), des Max-Planck-Instituts für biophysikalische Chemie (MPIBPC) und des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) am Standort Göttingen ist es nun erstmals gelungen, die Rolle des BAF-Multiproteinkomplexes genauer zu untersuchen.

Dieser Komplex ist in der Entwicklung des Vorderhirns entscheidend daran beteiligt, dass sich neuronale Stammzellen zu Nervenzellen entwickeln. Die Ergebnisse der Göttinger Wissenschaftler liefern erste Belege dafür, dass es einen molekularen Mechanismus gibt, in dem der BAF-Komplex zentral umfassende epigenetische und Genexpressionsprogramme kontrolliert. Die Ergebnisse wurden in der Fachzeitschrift Cell Reports veröffentlicht.

Originalveröffentlichung: Narayanan R, Pirouz M, Kerimoglu C, Kiszka K, Pham L, Wagener R, Rosenbusch J, Kessel M, Fischer A, Stoykova A, Staiger JF, Tuoc T (2014) Loss of the entire multi-subunit BAF (mSWI/SNF) complexes impairs global epigenetic programs in forebrain development. CELL REPORTS, 13(9): 1842-54.

NEUE ERKENNTNISSE ÜBER DEN BAF-KOMPLEX

Nach den neuen Erkenntnissen der Göttinger Forscher aktiviert der BAF-Komplex nicht selbst Genexpressionsprogramme. Vielmehr nimmt er indirekt Einfluss, indem er Abschaltmechanismen in neuronalen Zellen blockiert. Damit während der Hirnentwicklung Differenzierungsprogramme zur Bildung von Nervenzellen schnellst möglich aktiviert werden können, werden bestimmte Gene in einer Art Schwebezustand gehalten. Maßgeblich kontrolliert wird dieser Zustand durch die Präsenz bestimmter epigenetischer Marker, die Transkriptionsprozesse fördern bzw. unterdrücken. Während der Entwicklung interagiert der BAF-Komplex mit diesen Markern und unterstützt das Umschalten von Schwebezustand zu aktiviertem Zustand und initiiert so den Chromatin-Umbau.

BAF-MULTIPROTEINKOMPLEX: HINTERGRUNDINFORMATIONEN

Wie genau werden neuronale Stammzellen dazu gebracht, neue Nervenzellen hervorzubringen? Dies zu verstehen, ist eine der größten Herausforderungen in der Neurobiologie. Bisher konnte nicht umfassend geklärt werden, in welcher Weise der BAF-Multiproteinkomplex genau das Schicksal von neuronalen Vorläuferzellen beeinflusst.

Der BAF-Multiproteinkomplex ist in der Hirnentwicklung das zentrale Steuerelement für die Aktivierung von Programmen, die zur Neubildung von Nervenzellen führen. Seine Anlagerung an bestimmte Abschnitte des Genoms initiiert den Umbau der Chromatin-Struktur. Dabei wird inaktives, kondensiertes Chromatin (Heterochromatin) in die locker gepackte aktive Form (Euchromatin) umgewandelt. Die für die neuronale Differenzierung notwendigen Gene werden dadurch für bestimmte Transkriptionsfaktoren zugänglich und können an- oder abgeschaltet werden. Welche Bereiche des Chromatins einem Umbau unterzogen werden, wird zuvor durch epigenetische Einflüsse gesetzte, chemische Markierungen bestimmt.

ERGEBNISSE IM DETAIL

Den Göttinger Forschern ist es erstmals gelungen, Mäuse zu züchten, mit denen sich die Rolle des BAF-Komplexes für die Hirnentwicklung detailliert untersuchen lässt. Durch gezielte Mutagenese wurden verschiedene Faktoren des Komplexes eliminiert, so dass diese Mäuse über keine funktionellen BAF-Komplexe verfügen. Das Ergebnis: Die Proteinuntereinheiten BAF150 und BAF170 bilden als zentrale Schlüsselfaktoren das Grundgerüst des Komplexes.

Sie dienen als Andockstellen für die bis zu 15 weiteren BAF-Untereinheiten. Dabei regulieren sie nicht nur die Stabilität, sondern auch die Funktionalität des Komplexes. Mäuse, die diese beiden Faktoren nicht ausbilden, zeigen ein massiv gestörtes Wachstum der Vorderhirnstrukturen. Weitere Ergebnisse der Untersuchung: Das Fehlen eines funktionellen BAF-Komplexes verursachte eine massive Reduktion an locker gepacktem Euchromatin, verbunden mit einer dramatischen Abnahme an Genexpressionsereignissen. Gleichzeitig konnte eine starke Zunahme bestimmter Heterochromatin-Marker beobachtet werden.

„Diese Ergebnisse vertiefen unser Verständnis davon, wie Epigenetik und der Chromatin-Regulation das Schicksal neuronaler Vorläuferzellen und die Plastizität in der Hirnentwicklung beeinflussen. Sie werden außerdem dazu beitragen, neue therapeutische Strategien zu entwickeln, um die Neubildung von Nervenzellen im geschädigten Gehirn, beispielsweise bei der Therapie neurodegenerativer Erkrankungen, anzuregen”, sagt Dr. Tuoc Tran, Senior-Autor der Publikation und Wissenschaftler am Institut für Neuroanatomie der UMG.

Weitere Informationen:

http://www.neuroanatomie.uni-goettingen.de/de/home - Homepage des Instituts für Neuroanatomie der Universitätsmedizin Göttingen
http://www.cnmpb.de Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularbiologie des Gehirns (CNMPB)

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise