Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gegen den Strom – Mobilität der Bakterien als Angriffspunkt zur Krankheitsbekämpfung

18.11.2014

Sich zu bewegen, hilft vielen Bakterien, in bestimmte Nischen zu gelangen oder sich aus feindlichen Umgebungen zurückzuziehen.

Das Bakterium Mycoplasma gallisepticum, ein Krankheitserreger bei Geflügel, kann auf glatten Oberflächen gleiten. WissenschafterInnen der Vetmeduni Vienna fanden nun heraus, welche Proteine für diesen Gleitmechanismus verantwortlich sind. Das Gleiten zu unterbinden, könnte die Bakterien weniger infektiös machen, aber auch helfen, einen Impfstoff gegen den Erreger zu entwickeln. Die Ergebnisse wurden im Fachmagazin Veterinary Research veröffentlicht.


Mycoplasma gallisepticum auf Epithelzellen einer Hühnerluftröhre.

Foto: Michael Szostak / Vetmeduni Vienna

Mycoplasma gallisepticum verursacht chronische Erkrankungen der Atemwege bei Vögeln. Vor allem Hühner- und Putenherden sind von der Tierseuche betroffen. Besonders in Kombination mit weiteren Infektionen ist der Keim lebensbedrohlich für die Tiere. EU-weit müssen Geflügelzuchtbetriebe nachweislich frei von Mycoplasma gallisepticum sein, da sonst die Schließung droht.

Mycoplasma gallisepticum ist mit dem Humankeim Mycoplasma pneumoniae verwandt, der bei Menschen Bronchitis und Lungenentzündungen verursacht. Mycoplasmen gehören zu den kleinsten Mikroorganismen überhaupt. In der Fachwelt spricht man sogar von degenerierten Bakterien, da sie einen Großteil ihres Erbmaterials im Laufe der Evolution über Bord geworfen haben und somit das kleinste bakterielle Genom besitzen. Gerade das aber macht sie zu effizient angepassten Krankheitserregern bei Mensch und Tier.

Mindestens drei Proteine für Gleitmechanismus verantwortlich

Dass M. gallisepticum gleitet, ist seit den 1960er-Jahren bekannt. Wie der Mechanismus aber genau funktioniert und welche Proteine das Gleiten ermöglichen, war bislang unklar. Erstautorin Ivana Indikova und Studienleiter Michael Szostak vom Institut für Mikrobiologie der Vetmeduni Vienna haben nun herausgefunden, dass die Proteine GapA, CrmA und Mgc2 das Bakterium bewegen. „Fehlt dem Bakterium eines dieser drei Proteine, kann es sich nicht mehr eigenständig bewegen. Uns interessiert, ob unbewegliche Mycoplasmen weniger infektiös sind. Wäre das der Fall, könnten wir gezielt Mobilitätsgene ausschalten und so den Keim ungefährlich machen“, erklärt Szostak.

Die Gleitfähigkeit könnte sogar dazu beitragen, dass Mycoplasmen in Körperzellen eindringen und sie durchqueren können. Damit würden sie sich einerseits vor dem Immunsystem in Sicherheit bringen und andererseits die Infektion effizient über den Wirtskörper ausbreiten.

Auch die Entwicklung eines Impfstoffes schwebt den ExpertInnen vor. „Eine unbeweglicher und nicht krankmachender Keim könnte Basis für einen neuen Impfstoff sein, den das Immunsystem zwar erkennt und bekämpft, der aber keine Krankheit im Organismus verursacht“, erklärt Szostak.

Bewegen sich gleitende Mycoplasmen gegen den Strom?

Die Fähigkeit sich zu bewegen, bringt den Erregern also gewisse Vorteile. Auf welche Reize M. gallisepticum beim Gleiten reagiert, ist aber noch unbekannt. Szostak vermutet: „Die meisten Mycoplasmen können nicht gleiten. Die gleitenden Arten wurden bisher nur im Atemtrakt und Genitaltrakt nachgewiesen. Also überall dort, wo es einen gerichteten Schleimfluss gibt. Wir glauben, dass die gleitenden Bakterien sich möglicherweise gegen diesen Strom bewegen, um tieferliegende Körperregionen zu erreichen. Wir planen gerade weitere Experimente, um dieser Frage nachzugehen.“

Service:

Der Artikel „First identification of proteins involved in motility of Mycoplasma gallisepticum” von Ivana Indikova, Martin Vronka und Michael P. Szostak wurde im Journal Veterinary Research veröffentlicht. DOI: 10.1186/s13567-014-0099-2 http://www.veterinaryresearch.org/content/45/1/99

Über die Veterinärmedizinische Universität Wien

Die Veterinärmedizinische Universität Wien (Vetmeduni Vienna) ist eine der führenden veterinärmedizinischen, akademischen Bildungs- und Forschungsstätten Europas. Ihr Hauptaugenmerk gilt den Forschungsbereichen Tiergesundheit, Lebensmittelsicherheit, Tierhaltung und Tierschutz sowie den biomedizinischen Grundlagen. Die Vetmeduni Vienna beschäftigt 1.300 MitarbeiterInnen und bildet zurzeit 2.300 Studierende aus. Der Campus in Wien Floridsdorf verfügt über fünf Universitätskliniken und zahlreiche Forschungseinrichtungen. Zwei Forschungsinstitute am Wiener Wilhelminenberg sowie ein Lehr- und Forschungsgut in Niederösterreich gehören ebenfalls zur Vetmeduni Vienna. Im Jahr 2015 feiert die Vetmeduni Vienna ihr 250-jähriges Bestehen. http://www.vetmeduni.ac.at

Wissenschaftlicher Kontakt:
Dr. Michael Szostak
Institut für Mikrobiologie
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 20577-2104
michael.szostak@vetmeduni.ac.at

Aussenderin:
Dr. Susanna Kautschitsch
Wissenschaftskommunikation / Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at


Weitere Informationen:

http://www.vetmeduni.ac.at/de/infoservice/presseinformationen/presseinfo2014/bakterien-gleiten/

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive