Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gegen den Strom – Mobilität der Bakterien als Angriffspunkt zur Krankheitsbekämpfung

18.11.2014

Sich zu bewegen, hilft vielen Bakterien, in bestimmte Nischen zu gelangen oder sich aus feindlichen Umgebungen zurückzuziehen.

Das Bakterium Mycoplasma gallisepticum, ein Krankheitserreger bei Geflügel, kann auf glatten Oberflächen gleiten. WissenschafterInnen der Vetmeduni Vienna fanden nun heraus, welche Proteine für diesen Gleitmechanismus verantwortlich sind. Das Gleiten zu unterbinden, könnte die Bakterien weniger infektiös machen, aber auch helfen, einen Impfstoff gegen den Erreger zu entwickeln. Die Ergebnisse wurden im Fachmagazin Veterinary Research veröffentlicht.


Mycoplasma gallisepticum auf Epithelzellen einer Hühnerluftröhre.

Foto: Michael Szostak / Vetmeduni Vienna

Mycoplasma gallisepticum verursacht chronische Erkrankungen der Atemwege bei Vögeln. Vor allem Hühner- und Putenherden sind von der Tierseuche betroffen. Besonders in Kombination mit weiteren Infektionen ist der Keim lebensbedrohlich für die Tiere. EU-weit müssen Geflügelzuchtbetriebe nachweislich frei von Mycoplasma gallisepticum sein, da sonst die Schließung droht.

Mycoplasma gallisepticum ist mit dem Humankeim Mycoplasma pneumoniae verwandt, der bei Menschen Bronchitis und Lungenentzündungen verursacht. Mycoplasmen gehören zu den kleinsten Mikroorganismen überhaupt. In der Fachwelt spricht man sogar von degenerierten Bakterien, da sie einen Großteil ihres Erbmaterials im Laufe der Evolution über Bord geworfen haben und somit das kleinste bakterielle Genom besitzen. Gerade das aber macht sie zu effizient angepassten Krankheitserregern bei Mensch und Tier.

Mindestens drei Proteine für Gleitmechanismus verantwortlich

Dass M. gallisepticum gleitet, ist seit den 1960er-Jahren bekannt. Wie der Mechanismus aber genau funktioniert und welche Proteine das Gleiten ermöglichen, war bislang unklar. Erstautorin Ivana Indikova und Studienleiter Michael Szostak vom Institut für Mikrobiologie der Vetmeduni Vienna haben nun herausgefunden, dass die Proteine GapA, CrmA und Mgc2 das Bakterium bewegen. „Fehlt dem Bakterium eines dieser drei Proteine, kann es sich nicht mehr eigenständig bewegen. Uns interessiert, ob unbewegliche Mycoplasmen weniger infektiös sind. Wäre das der Fall, könnten wir gezielt Mobilitätsgene ausschalten und so den Keim ungefährlich machen“, erklärt Szostak.

Die Gleitfähigkeit könnte sogar dazu beitragen, dass Mycoplasmen in Körperzellen eindringen und sie durchqueren können. Damit würden sie sich einerseits vor dem Immunsystem in Sicherheit bringen und andererseits die Infektion effizient über den Wirtskörper ausbreiten.

Auch die Entwicklung eines Impfstoffes schwebt den ExpertInnen vor. „Eine unbeweglicher und nicht krankmachender Keim könnte Basis für einen neuen Impfstoff sein, den das Immunsystem zwar erkennt und bekämpft, der aber keine Krankheit im Organismus verursacht“, erklärt Szostak.

Bewegen sich gleitende Mycoplasmen gegen den Strom?

Die Fähigkeit sich zu bewegen, bringt den Erregern also gewisse Vorteile. Auf welche Reize M. gallisepticum beim Gleiten reagiert, ist aber noch unbekannt. Szostak vermutet: „Die meisten Mycoplasmen können nicht gleiten. Die gleitenden Arten wurden bisher nur im Atemtrakt und Genitaltrakt nachgewiesen. Also überall dort, wo es einen gerichteten Schleimfluss gibt. Wir glauben, dass die gleitenden Bakterien sich möglicherweise gegen diesen Strom bewegen, um tieferliegende Körperregionen zu erreichen. Wir planen gerade weitere Experimente, um dieser Frage nachzugehen.“

Service:

Der Artikel „First identification of proteins involved in motility of Mycoplasma gallisepticum” von Ivana Indikova, Martin Vronka und Michael P. Szostak wurde im Journal Veterinary Research veröffentlicht. DOI: 10.1186/s13567-014-0099-2 http://www.veterinaryresearch.org/content/45/1/99

Über die Veterinärmedizinische Universität Wien

Die Veterinärmedizinische Universität Wien (Vetmeduni Vienna) ist eine der führenden veterinärmedizinischen, akademischen Bildungs- und Forschungsstätten Europas. Ihr Hauptaugenmerk gilt den Forschungsbereichen Tiergesundheit, Lebensmittelsicherheit, Tierhaltung und Tierschutz sowie den biomedizinischen Grundlagen. Die Vetmeduni Vienna beschäftigt 1.300 MitarbeiterInnen und bildet zurzeit 2.300 Studierende aus. Der Campus in Wien Floridsdorf verfügt über fünf Universitätskliniken und zahlreiche Forschungseinrichtungen. Zwei Forschungsinstitute am Wiener Wilhelminenberg sowie ein Lehr- und Forschungsgut in Niederösterreich gehören ebenfalls zur Vetmeduni Vienna. Im Jahr 2015 feiert die Vetmeduni Vienna ihr 250-jähriges Bestehen. http://www.vetmeduni.ac.at

Wissenschaftlicher Kontakt:
Dr. Michael Szostak
Institut für Mikrobiologie
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 20577-2104
michael.szostak@vetmeduni.ac.at

Aussenderin:
Dr. Susanna Kautschitsch
Wissenschaftskommunikation / Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at


Weitere Informationen:

http://www.vetmeduni.ac.at/de/infoservice/presseinformationen/presseinfo2014/bakterien-gleiten/

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Filter für schweren Wasserstoff
28.02.2017 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Wie Medikamente als Virus getarnt gegen Krebs wirken können
28.02.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Künstlicher Intelligenz das Gehirn verstehen

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas...

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nebennierentumoren: Radioaktiv markierte Substanzen vermeiden unnötige Operationen

28.02.2017 | Veranstaltungen

350 Onlineforscher_innen treffen sich zur Fachkonferenz General Online Research an der HTW Berlin

28.02.2017 | Veranstaltungen

23. VDMA-Arbeitsberatung „Engineering und Konstruktion“ am 2. März 2017 an der TH Wildau

28.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology