Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefangen im Tunnel: Wie Bakterien sich gegen Antibiotika wehren

30.03.2012
Wie ein Mini-Staubsauger wirkt eine Pumpe in der Bakterien-Membran, die eindringende Antibiotika-Moleküle wieder nach draußen befördert und das Bakterium damit gegen den Wirkstoff resistent macht. Die Details des Prozesses haben Frankfurter Wissenschaftler jetzt mit hochauflösender Röntgenspektroskopie aufgeklärt.

Multiple Antibiotika-Resistenz ist in den vergangenen Jahren zu einem ernsten medizinischen Problem geworden. Immer mehr bakterielle Krankheitserreger haben Mechanismen entwickelt, sich gegen die gängigen Antibiotika zur Wehr setzen. Hoch effizient sind beispielsweise Pumpen in der Bakterienmembran, die den Wirkstoff aus der Zelle hinaus befördern, noch bevor er die Membran durchquert hat.


Die Antibiotikapumpe AcrB (im Hintergrund) besteht aus drei identischen Bestandteilen, die jeweils ein Stadium der peristaltischen Pumpbewegung repräsentieren (blau, gelb, rot). Durch die neue Kristallstruktur konnten die molekularen Details über die Zugänge (grün) eines Antibiotikums in die Pumpe aufgeklärt werden. Das Bild im Vordergrund zeigt, dass zwei verschiedene Bindetaschen (dargestellt als Sphären) an der Erkennung des Antibiotikums beteiligt sind. Die Taschen werden durch eine Schleife (zwischen den zwei Antibiotikamolekülen) zeitlich und räumlich koordiniert. Abb. Hi-jea Cha

Biochemiker des Frankfurter Exzellenzclusters „Makromolekulare Komplexe“ am Institut für Biochemie haben nun den Bauplan dieser Pumpen entschlüsselt, so dass sie deren Funktion besser verstehen. Die in den Proceedings der National Acadamy of Sciences publizierte Arbeit ist nicht nur für die Grundlagenforschung interessant, sondern könnte auch Ansatzpunkte aufzeigen, die Abwehr-Tricks der Bakterien mit neuen Wirkstoffen gezielt zu umgehen.

„Die Pumpen sind wie Mini-Staubsauger oder eher Antibiotika-Sauger“, erklärt Doktorand Hi-jea Cha aus der Arbeitsgruppe von Prof. Klaas Martinus Pos. „Sie sichern das Überleben des Bakteriums, indem sie das Zellinnere von gefährlichen Substanzen frei halten“. Wie diese Pumpen funktionieren, untersuchen die Forscher bereits seit einigen Jahren. Zunächst analysierten sie die Mechanik der Nanomaschine ohne Bindung an ein Antibiotikum. Mithilfe hoch auflösender Röntgenstrukturanalyse haben sie jetzt herausgefunden, wie die Pumpe die Antibiotika einfängt und aus der Zelle befördert. Das geschieht bei Bakterien mit einer doppelten Zellmembran (Gram-negativ) in der Schicht zwischen äußerer und innerer Membran.
Die Pumpe verändert ihre Gestalt in einem zyklischen Prozess. Im ersten Schritt, der jetzt im Detail sichtbar gemacht wurde, wird das Antibiotikum auf dem Weg zum Zellinneren abgefangen und an einer taschenförmigen Bindungsstelle festgehalten. „Dafür postulieren wir einen Mechanismus ähnlich einer peristaltischen Pumpe: Die Antibiotika-Moleküle werden durch einen Tunnel nach außen gequetscht wie Nahrung durch die Speiseröhre zum Magen, so dass sie nicht zurückrutschen können“, so Pos. Die zweite, viel kräftigere Bindung in einer tiefen Bindungstasche verankert dann das Antibiotikum in der Pumpe. Dies bewirkt eine weitere Gestaltveränderung, welche einen weiteren Tunnel zur Außenseite öffnet und das Antibiotikum endgültig aus der Zelle entlässt.

Zwischen der ersten und zweiten Bindungstasche haben die Forscher zudem eine kleine Schleife beobachtet, die eine Schaltstelle bildet. Die Position dieser Schleife verändert sich, je nach dem ob das Antibiotikum in der ersten oder in der zweiten Tasche gebunden ist. Die genaue Funktion dieser Schleife wird zurzeit eingehend untersucht.

Publikation:
Thomas Eicher, Hi-jea Cha, Markus Seeger et al.: Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch loop, in: PNAS early edition, www.pnas.org/cgi/doi/10.1073/pnas.1114944109.

Informationen: Prof. Klaas Martinus Pos, Hi-jea Cha, Institut für Biochemie, Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel.: (069)798-29251 bzw. - 29262; pos@em.uni-frankfurt.de, cha@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie