Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefangen im Tunnel: Wie Bakterien sich gegen Antibiotika wehren

30.03.2012
Wie ein Mini-Staubsauger wirkt eine Pumpe in der Bakterien-Membran, die eindringende Antibiotika-Moleküle wieder nach draußen befördert und das Bakterium damit gegen den Wirkstoff resistent macht. Die Details des Prozesses haben Frankfurter Wissenschaftler jetzt mit hochauflösender Röntgenspektroskopie aufgeklärt.

Multiple Antibiotika-Resistenz ist in den vergangenen Jahren zu einem ernsten medizinischen Problem geworden. Immer mehr bakterielle Krankheitserreger haben Mechanismen entwickelt, sich gegen die gängigen Antibiotika zur Wehr setzen. Hoch effizient sind beispielsweise Pumpen in der Bakterienmembran, die den Wirkstoff aus der Zelle hinaus befördern, noch bevor er die Membran durchquert hat.


Die Antibiotikapumpe AcrB (im Hintergrund) besteht aus drei identischen Bestandteilen, die jeweils ein Stadium der peristaltischen Pumpbewegung repräsentieren (blau, gelb, rot). Durch die neue Kristallstruktur konnten die molekularen Details über die Zugänge (grün) eines Antibiotikums in die Pumpe aufgeklärt werden. Das Bild im Vordergrund zeigt, dass zwei verschiedene Bindetaschen (dargestellt als Sphären) an der Erkennung des Antibiotikums beteiligt sind. Die Taschen werden durch eine Schleife (zwischen den zwei Antibiotikamolekülen) zeitlich und räumlich koordiniert. Abb. Hi-jea Cha

Biochemiker des Frankfurter Exzellenzclusters „Makromolekulare Komplexe“ am Institut für Biochemie haben nun den Bauplan dieser Pumpen entschlüsselt, so dass sie deren Funktion besser verstehen. Die in den Proceedings der National Acadamy of Sciences publizierte Arbeit ist nicht nur für die Grundlagenforschung interessant, sondern könnte auch Ansatzpunkte aufzeigen, die Abwehr-Tricks der Bakterien mit neuen Wirkstoffen gezielt zu umgehen.

„Die Pumpen sind wie Mini-Staubsauger oder eher Antibiotika-Sauger“, erklärt Doktorand Hi-jea Cha aus der Arbeitsgruppe von Prof. Klaas Martinus Pos. „Sie sichern das Überleben des Bakteriums, indem sie das Zellinnere von gefährlichen Substanzen frei halten“. Wie diese Pumpen funktionieren, untersuchen die Forscher bereits seit einigen Jahren. Zunächst analysierten sie die Mechanik der Nanomaschine ohne Bindung an ein Antibiotikum. Mithilfe hoch auflösender Röntgenstrukturanalyse haben sie jetzt herausgefunden, wie die Pumpe die Antibiotika einfängt und aus der Zelle befördert. Das geschieht bei Bakterien mit einer doppelten Zellmembran (Gram-negativ) in der Schicht zwischen äußerer und innerer Membran.
Die Pumpe verändert ihre Gestalt in einem zyklischen Prozess. Im ersten Schritt, der jetzt im Detail sichtbar gemacht wurde, wird das Antibiotikum auf dem Weg zum Zellinneren abgefangen und an einer taschenförmigen Bindungsstelle festgehalten. „Dafür postulieren wir einen Mechanismus ähnlich einer peristaltischen Pumpe: Die Antibiotika-Moleküle werden durch einen Tunnel nach außen gequetscht wie Nahrung durch die Speiseröhre zum Magen, so dass sie nicht zurückrutschen können“, so Pos. Die zweite, viel kräftigere Bindung in einer tiefen Bindungstasche verankert dann das Antibiotikum in der Pumpe. Dies bewirkt eine weitere Gestaltveränderung, welche einen weiteren Tunnel zur Außenseite öffnet und das Antibiotikum endgültig aus der Zelle entlässt.

Zwischen der ersten und zweiten Bindungstasche haben die Forscher zudem eine kleine Schleife beobachtet, die eine Schaltstelle bildet. Die Position dieser Schleife verändert sich, je nach dem ob das Antibiotikum in der ersten oder in der zweiten Tasche gebunden ist. Die genaue Funktion dieser Schleife wird zurzeit eingehend untersucht.

Publikation:
Thomas Eicher, Hi-jea Cha, Markus Seeger et al.: Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch loop, in: PNAS early edition, www.pnas.org/cgi/doi/10.1073/pnas.1114944109.

Informationen: Prof. Klaas Martinus Pos, Hi-jea Cha, Institut für Biochemie, Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel.: (069)798-29251 bzw. - 29262; pos@em.uni-frankfurt.de, cha@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften