Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefangen im Tunnel: Wie Bakterien sich gegen Antibiotika wehren

30.03.2012
Wie ein Mini-Staubsauger wirkt eine Pumpe in der Bakterien-Membran, die eindringende Antibiotika-Moleküle wieder nach draußen befördert und das Bakterium damit gegen den Wirkstoff resistent macht. Die Details des Prozesses haben Frankfurter Wissenschaftler jetzt mit hochauflösender Röntgenspektroskopie aufgeklärt.

Multiple Antibiotika-Resistenz ist in den vergangenen Jahren zu einem ernsten medizinischen Problem geworden. Immer mehr bakterielle Krankheitserreger haben Mechanismen entwickelt, sich gegen die gängigen Antibiotika zur Wehr setzen. Hoch effizient sind beispielsweise Pumpen in der Bakterienmembran, die den Wirkstoff aus der Zelle hinaus befördern, noch bevor er die Membran durchquert hat.


Die Antibiotikapumpe AcrB (im Hintergrund) besteht aus drei identischen Bestandteilen, die jeweils ein Stadium der peristaltischen Pumpbewegung repräsentieren (blau, gelb, rot). Durch die neue Kristallstruktur konnten die molekularen Details über die Zugänge (grün) eines Antibiotikums in die Pumpe aufgeklärt werden. Das Bild im Vordergrund zeigt, dass zwei verschiedene Bindetaschen (dargestellt als Sphären) an der Erkennung des Antibiotikums beteiligt sind. Die Taschen werden durch eine Schleife (zwischen den zwei Antibiotikamolekülen) zeitlich und räumlich koordiniert. Abb. Hi-jea Cha

Biochemiker des Frankfurter Exzellenzclusters „Makromolekulare Komplexe“ am Institut für Biochemie haben nun den Bauplan dieser Pumpen entschlüsselt, so dass sie deren Funktion besser verstehen. Die in den Proceedings der National Acadamy of Sciences publizierte Arbeit ist nicht nur für die Grundlagenforschung interessant, sondern könnte auch Ansatzpunkte aufzeigen, die Abwehr-Tricks der Bakterien mit neuen Wirkstoffen gezielt zu umgehen.

„Die Pumpen sind wie Mini-Staubsauger oder eher Antibiotika-Sauger“, erklärt Doktorand Hi-jea Cha aus der Arbeitsgruppe von Prof. Klaas Martinus Pos. „Sie sichern das Überleben des Bakteriums, indem sie das Zellinnere von gefährlichen Substanzen frei halten“. Wie diese Pumpen funktionieren, untersuchen die Forscher bereits seit einigen Jahren. Zunächst analysierten sie die Mechanik der Nanomaschine ohne Bindung an ein Antibiotikum. Mithilfe hoch auflösender Röntgenstrukturanalyse haben sie jetzt herausgefunden, wie die Pumpe die Antibiotika einfängt und aus der Zelle befördert. Das geschieht bei Bakterien mit einer doppelten Zellmembran (Gram-negativ) in der Schicht zwischen äußerer und innerer Membran.
Die Pumpe verändert ihre Gestalt in einem zyklischen Prozess. Im ersten Schritt, der jetzt im Detail sichtbar gemacht wurde, wird das Antibiotikum auf dem Weg zum Zellinneren abgefangen und an einer taschenförmigen Bindungsstelle festgehalten. „Dafür postulieren wir einen Mechanismus ähnlich einer peristaltischen Pumpe: Die Antibiotika-Moleküle werden durch einen Tunnel nach außen gequetscht wie Nahrung durch die Speiseröhre zum Magen, so dass sie nicht zurückrutschen können“, so Pos. Die zweite, viel kräftigere Bindung in einer tiefen Bindungstasche verankert dann das Antibiotikum in der Pumpe. Dies bewirkt eine weitere Gestaltveränderung, welche einen weiteren Tunnel zur Außenseite öffnet und das Antibiotikum endgültig aus der Zelle entlässt.

Zwischen der ersten und zweiten Bindungstasche haben die Forscher zudem eine kleine Schleife beobachtet, die eine Schaltstelle bildet. Die Position dieser Schleife verändert sich, je nach dem ob das Antibiotikum in der ersten oder in der zweiten Tasche gebunden ist. Die genaue Funktion dieser Schleife wird zurzeit eingehend untersucht.

Publikation:
Thomas Eicher, Hi-jea Cha, Markus Seeger et al.: Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch loop, in: PNAS early edition, www.pnas.org/cgi/doi/10.1073/pnas.1114944109.

Informationen: Prof. Klaas Martinus Pos, Hi-jea Cha, Institut für Biochemie, Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel.: (069)798-29251 bzw. - 29262; pos@em.uni-frankfurt.de, cha@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics