Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährlicher Grenzverkehr: Wie aggressive Zellen in das Gehirn eindringen

15.10.2009
Live-Beobachtungen geben neue Einblicke in Vorgänge der Multiplen Sklerose. Online-Veröffentlichung in: Nature, 14. Oktober 2009

Bei Krankheiten wie der Multiplen Sklerose dringen Zellen des Immunsystems in das Hirngewebe ein, wo sie großen Schaden anrichten. Lange Zeit war es ein Rätsel, wie diese Zellen den Blutstrom verlassen können, denn Blut- und Nervensystem sind normalerweise durch spezielle Blutgefäßwände voneinander getrennt.


Die Aufnahme zeigt die Bewegungen der kriechenden T-Zellen (grün) innerhalb der Blutgefäße (rot) über einen Zeitraum von zirka 20 Minuten. Deutlich zu erkennen ist, dass einige T-Zellen die Blutgefäße verlassen und ihre grüne Spur durch das umgebende Hirngewebe ziehen. Foto: MPI für Neurobiologie / Bartholomäus

Dass die Immunzellen dennoch zu den Nervenzellen vordringen können, war bisher nur durch Gewebeschnitte belegt. Nun konnte ein Team von Wissenschaftlern des Max-Planck-Instituts für Neurobiologie in Martinsried und der Universitätsmedizin Göttingen die Bewegungen dieser Zellen erstmals "live" unter dem Mikroskop beobachten. Dabei kamen ganz neue Verhaltensweisen der Immunzellen ans Licht. Die Erkenntnisse tragen entscheidend zu unserem Verständnis der komplexen Krankheit bei.

Unterstützt wurden die Forschungsarbeiten von der Hertie-Stiftung. Die Leitung der Studie hatte Prof. Dr. Alexander Flügel, langjähriger Mitarbeiter des MPI für Neurobiologie, heutiger Direktor der Abteilung experimentelle und klinische Neuroimmunologie und Leiter des in 2004 von der Hertie-Stiftung gegründeten Multiple-Sklerose-Instituts an der Universitätsmedizin Göttingen. Die Ergebnisse sind heute, 14. Oktober 2009, in der Online-Ausgabe der renommierten, internationalen Fachzeitschrift "NATURE" veröffentlicht.

Identifizierung der Täter
Normalerweise besteht eine sehr effektive Trennung zwischen dem Zentralen Nervensystem, also dem Gehirn und Rückenmark, und dem Blutkreislauf. Deshalb war es lange Zeit rätselhaft, wie die Immunzellen die Blut-Hirn-Schranke durchbrechen können. Dies ist eine wichtige Frage zur Entstehung der Multiplen Sklerose. Erst in den 80iger-Jahren des letzten Jahrhunderts konnten Wissenschaftler zeigen, dass unter bestimmten Bedingungen Immunzellen, so genannte T-Zellen, Bestandteile des körpereigenen Hirngewebes erkennen und angreifen. Die Wanderung dieser Zellen von ihrem Entstehungsort bis hin zum Eindringen in das Hirngewebe und die resultierenden Schäden klärten sich durch Gewebeschnitte in den letzten Jahrzehnten immer weiter auf. Eine tatsächliche Beobachtung dieser Zellbewegungen blieb jedoch lange unmöglich.
Aggressive Zellen live beobachten
Diese Hürde nahmen nun Wissenschaftler des Max-Planck-Instituts für Neurobiologie und der Universitätsmedizin Göttingen mit ihren Forscherkollegen. Sie markierten aggressive T-Zellen mit dem Grün Fluoreszierenden Protein (GFP) in Ratten. So konnten sie die Zellenbewegungen im lebenden Gewebe durch ein Zwei-Photonen-Mikroskop verfolgen. Diese gezielte Beobachtung der Zellen im Verlauf der Krankheit bescherte den Wissenschaftlern eine ganze Reihe von neuen Einblicken in das Verhalten dieser Zellen.

Die Wissenschaftler fanden heraus, dass die aggressiven T-Zellen die Grenzbarriere zwischen Blut und Nervengewebe in mehreren Schritten überwinden. Außerhalb des Nervensystems bewegten sich die markierten Zellen wie erwartet: Die meisten Zellen ließen sich vom Blutstrom treiben. Nur vereinzelt blieben Zellen für kurze Zeit an den Gefäßwänden haften, bevor sie in Richtung des Blutstroms weiterrollten oder wieder mitgerissen wurden. Erreichten die T-Zellen jedoch die Gefäße des Nervensystems, so verhielten sie sich völlig anders. Immer häufiger beobachteten die Wissenschaftler, wie sich die Zellen an den Gefäßwänden festsetzten. "Richtig spannend wurde es dann, als wir sahen, dass die Zellen kriechen. Das war ein bisher gänzlich unbekanntes Verhalten für T-Zellen", berichtet Ingo Bartholomäus vom MPI für Neurobiologie, der Erst-Autor der NATURE-Veröffentlichung. "Kriechen" beschreibt hier eine aktive Bewegung der Zellen, die vor allem gegen den Blutstrom verläuft. Die Forscher beobachteten, wie die T-Zellen für mehrere Minuten bis Stunden an den Gefäßwänden entlangwanderten und oder ihre Kreise zogen. Am Ende dieser Suchbewegung wurden die Zellen entweder wieder vom Blutstrom mitgerissen oder sie zwängten sich durch die Gefäßwand.

Folgenschwere Begegnungen
Hatten die Zellen die Barriere der Blut-Hirn-Schranke erfolgreich durchbrochen, setzten sie ihre Suche im Umkreis der Blutgefäße fort. So war es nur eine Frage der Zeit, bis die T-Zellen auf eine der so genannten Fresszellen stießen. Traf eine der beweglichen T-Zellen auf solch eine Fresszelle, so bildeten die beiden ein eng verbundenes Paar. Einige dieser Paare blieben für mehrere Minuten unzertrennlich. Dass T-Zellen erst mit Fresszellen in Kontakt treten müssen, um ihre Immunfunktion auszuüben, ist seit längerem bekannt. Völlig neu ist, dass Forscher erstmals solche Interaktionen direkt an der Blut-Hirn-Schranke beobachten. Und tatsächlich begannen die T-Zellen erst nach dem Kontakt mit den Fresszellen, entzündungsfördernde Botenstoffe auszuschütten und so den Angriff auf das Nervensystem einzuleiten. Als eine der Folgen durchquerten immer mehr T-Zellen die Wände der Blutgefäße. "Anscheinend ist die Aktivierung der T-Zellen an der Grenze zum Nervengewebe somit ein entscheidendes Signal für das Eindringen der Immunzellen", folgert Prof. Dr. Alexander Flügel, der Leiter der Studie.
Vorgänge verstehen
Und noch etwas fanden die Wissenschaftler durch die "Live-Beobachtungen" heraus: Gaben sie spezielle Antikörper ins Blut, die bereits in der MS-Therapie eingesetzt werden, so verschwanden die kriechenden Zellen. "Bisher wurde angenommen, dass diese Antikörper das Austreten der T-Zellen aus den Blutgefäßen blockieren", so Ingo Bartholomäus. "Unsere Beobachtungen zeigen nun, dass sie bereits das Kriechen verhindern, also einen Schritt früher eingreifen als bisher angenommen."

Die Beobachtungen der Wissenschaftler ergeben nun ein viel detaillierteres Bild von den Bewegungen und dem Eindringen der Immunzellen in das Zentrale Nervensystem. Mit diesem Wissen lässt sich auch die ständige Immunüberwachung im gesunden Gewebe besser verstehen. Doch die Ergebnisse und das neue Wissen werfen auch viele neue Fragen auf: Woran haften die Immunzellen auf den Gefäßoberflächen und wie erkennen sie eine geeignete Stelle für den Wechsel zwischen Blut- und Nervensystem? Was leitet die Zellen nach dem Durchbrechen der Blut-Hirn-Schranke? Dies sind einige der Fragen, denen die Wissenschaftler als nächstes auf den Grund gehen wollen. Das langfristige Ziel ist es, neue Therapien und Medikamente für Krankheiten wie der Multiplen Sklerose zu entwickeln.

HINTERGRUNDINFORMATIONEN
Das Gehirn und das Rückenmark überwachen und steuern die Funktionen aller Körperteile und regeln die Bewegungen, die Sinne und das Verhalten des Organismus. Der Schutz des Gehirns und des Rückenmarks hat daher oberste Priorität. Schädelknochen und Wirbelsäule halten mechanische Verletzungen und äußere Einflüsse fern. Gefahren von innen, zum Beispiel im Blut zirkulierende Krankheitserreger, werden durch hoch spezialisierte Blutgefäße abgewehrt. Die Wände dieser Gefäße bilden eine Grenzbarriere, die Zellen und viele kleinere Partikel nicht passieren können - die empfindlichen Nervenzellen sind geschützt. Es gibt jedoch Ausnahmen. Bei Erkrankungen wie der Multiplen Sklerose (MS) gelingt es aggressiven Zellen des Immunsystems die Barriere der Blutgefäße zu durchbrechen. Einmal in das Hirngewebe eingedrungen richten diese Zellen großen Schaden an: Sie lösen Entzündungsreaktionen aus und greifen Nervenzellen an. Das Ergebnis sind vielfältige Beeinträchtigungen, unter denen alleine in Deutschland über 120 000 MS-Patienten leiden.
Originalveröffentlichung:
Ingo Bartholomäus*, Naoto Kawakami*, Francesca Odoardi, Christian Schläger, Djordje Miljkovic, Joachim W. Ellwart, Wolfgang EF Klinkert, Cassandra Flügel-Koch, Thomas B. Issekutz, Hartmut Wekerle, Alexander Flügel [*gleichrangiger Beitrag]

Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions, Nature 14. Oktober 2009

KONTAKT
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Presse- und Öffentlichkeitsarbeit
Telefon: 089 / 8578 3514, E-Mail: merker@neuro.mpg.de
Prof. Dr. Alexander Flügel
Universitätsmedizin Göttingen, Georg-August-Universität
Direktor der Abteilung Experimentelle und Klinische Neuroimmunologie / MS Hertie-Institut

Telefon: 0551 / 3913 348, E-Mail: imfs@med.uni-goettingen.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.msforschung.med.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte