Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährlicher Grenzverkehr: Wie aggressive Zellen in das Gehirn eindringen

15.10.2009
Live-Beobachtungen geben neue Einblicke in Vorgänge der Multiplen Sklerose. Online-Veröffentlichung in: Nature, 14. Oktober 2009

Bei Krankheiten wie der Multiplen Sklerose dringen Zellen des Immunsystems in das Hirngewebe ein, wo sie großen Schaden anrichten. Lange Zeit war es ein Rätsel, wie diese Zellen den Blutstrom verlassen können, denn Blut- und Nervensystem sind normalerweise durch spezielle Blutgefäßwände voneinander getrennt.


Die Aufnahme zeigt die Bewegungen der kriechenden T-Zellen (grün) innerhalb der Blutgefäße (rot) über einen Zeitraum von zirka 20 Minuten. Deutlich zu erkennen ist, dass einige T-Zellen die Blutgefäße verlassen und ihre grüne Spur durch das umgebende Hirngewebe ziehen. Foto: MPI für Neurobiologie / Bartholomäus

Dass die Immunzellen dennoch zu den Nervenzellen vordringen können, war bisher nur durch Gewebeschnitte belegt. Nun konnte ein Team von Wissenschaftlern des Max-Planck-Instituts für Neurobiologie in Martinsried und der Universitätsmedizin Göttingen die Bewegungen dieser Zellen erstmals "live" unter dem Mikroskop beobachten. Dabei kamen ganz neue Verhaltensweisen der Immunzellen ans Licht. Die Erkenntnisse tragen entscheidend zu unserem Verständnis der komplexen Krankheit bei.

Unterstützt wurden die Forschungsarbeiten von der Hertie-Stiftung. Die Leitung der Studie hatte Prof. Dr. Alexander Flügel, langjähriger Mitarbeiter des MPI für Neurobiologie, heutiger Direktor der Abteilung experimentelle und klinische Neuroimmunologie und Leiter des in 2004 von der Hertie-Stiftung gegründeten Multiple-Sklerose-Instituts an der Universitätsmedizin Göttingen. Die Ergebnisse sind heute, 14. Oktober 2009, in der Online-Ausgabe der renommierten, internationalen Fachzeitschrift "NATURE" veröffentlicht.

Identifizierung der Täter
Normalerweise besteht eine sehr effektive Trennung zwischen dem Zentralen Nervensystem, also dem Gehirn und Rückenmark, und dem Blutkreislauf. Deshalb war es lange Zeit rätselhaft, wie die Immunzellen die Blut-Hirn-Schranke durchbrechen können. Dies ist eine wichtige Frage zur Entstehung der Multiplen Sklerose. Erst in den 80iger-Jahren des letzten Jahrhunderts konnten Wissenschaftler zeigen, dass unter bestimmten Bedingungen Immunzellen, so genannte T-Zellen, Bestandteile des körpereigenen Hirngewebes erkennen und angreifen. Die Wanderung dieser Zellen von ihrem Entstehungsort bis hin zum Eindringen in das Hirngewebe und die resultierenden Schäden klärten sich durch Gewebeschnitte in den letzten Jahrzehnten immer weiter auf. Eine tatsächliche Beobachtung dieser Zellbewegungen blieb jedoch lange unmöglich.
Aggressive Zellen live beobachten
Diese Hürde nahmen nun Wissenschaftler des Max-Planck-Instituts für Neurobiologie und der Universitätsmedizin Göttingen mit ihren Forscherkollegen. Sie markierten aggressive T-Zellen mit dem Grün Fluoreszierenden Protein (GFP) in Ratten. So konnten sie die Zellenbewegungen im lebenden Gewebe durch ein Zwei-Photonen-Mikroskop verfolgen. Diese gezielte Beobachtung der Zellen im Verlauf der Krankheit bescherte den Wissenschaftlern eine ganze Reihe von neuen Einblicken in das Verhalten dieser Zellen.

Die Wissenschaftler fanden heraus, dass die aggressiven T-Zellen die Grenzbarriere zwischen Blut und Nervengewebe in mehreren Schritten überwinden. Außerhalb des Nervensystems bewegten sich die markierten Zellen wie erwartet: Die meisten Zellen ließen sich vom Blutstrom treiben. Nur vereinzelt blieben Zellen für kurze Zeit an den Gefäßwänden haften, bevor sie in Richtung des Blutstroms weiterrollten oder wieder mitgerissen wurden. Erreichten die T-Zellen jedoch die Gefäße des Nervensystems, so verhielten sie sich völlig anders. Immer häufiger beobachteten die Wissenschaftler, wie sich die Zellen an den Gefäßwänden festsetzten. "Richtig spannend wurde es dann, als wir sahen, dass die Zellen kriechen. Das war ein bisher gänzlich unbekanntes Verhalten für T-Zellen", berichtet Ingo Bartholomäus vom MPI für Neurobiologie, der Erst-Autor der NATURE-Veröffentlichung. "Kriechen" beschreibt hier eine aktive Bewegung der Zellen, die vor allem gegen den Blutstrom verläuft. Die Forscher beobachteten, wie die T-Zellen für mehrere Minuten bis Stunden an den Gefäßwänden entlangwanderten und oder ihre Kreise zogen. Am Ende dieser Suchbewegung wurden die Zellen entweder wieder vom Blutstrom mitgerissen oder sie zwängten sich durch die Gefäßwand.

Folgenschwere Begegnungen
Hatten die Zellen die Barriere der Blut-Hirn-Schranke erfolgreich durchbrochen, setzten sie ihre Suche im Umkreis der Blutgefäße fort. So war es nur eine Frage der Zeit, bis die T-Zellen auf eine der so genannten Fresszellen stießen. Traf eine der beweglichen T-Zellen auf solch eine Fresszelle, so bildeten die beiden ein eng verbundenes Paar. Einige dieser Paare blieben für mehrere Minuten unzertrennlich. Dass T-Zellen erst mit Fresszellen in Kontakt treten müssen, um ihre Immunfunktion auszuüben, ist seit längerem bekannt. Völlig neu ist, dass Forscher erstmals solche Interaktionen direkt an der Blut-Hirn-Schranke beobachten. Und tatsächlich begannen die T-Zellen erst nach dem Kontakt mit den Fresszellen, entzündungsfördernde Botenstoffe auszuschütten und so den Angriff auf das Nervensystem einzuleiten. Als eine der Folgen durchquerten immer mehr T-Zellen die Wände der Blutgefäße. "Anscheinend ist die Aktivierung der T-Zellen an der Grenze zum Nervengewebe somit ein entscheidendes Signal für das Eindringen der Immunzellen", folgert Prof. Dr. Alexander Flügel, der Leiter der Studie.
Vorgänge verstehen
Und noch etwas fanden die Wissenschaftler durch die "Live-Beobachtungen" heraus: Gaben sie spezielle Antikörper ins Blut, die bereits in der MS-Therapie eingesetzt werden, so verschwanden die kriechenden Zellen. "Bisher wurde angenommen, dass diese Antikörper das Austreten der T-Zellen aus den Blutgefäßen blockieren", so Ingo Bartholomäus. "Unsere Beobachtungen zeigen nun, dass sie bereits das Kriechen verhindern, also einen Schritt früher eingreifen als bisher angenommen."

Die Beobachtungen der Wissenschaftler ergeben nun ein viel detaillierteres Bild von den Bewegungen und dem Eindringen der Immunzellen in das Zentrale Nervensystem. Mit diesem Wissen lässt sich auch die ständige Immunüberwachung im gesunden Gewebe besser verstehen. Doch die Ergebnisse und das neue Wissen werfen auch viele neue Fragen auf: Woran haften die Immunzellen auf den Gefäßoberflächen und wie erkennen sie eine geeignete Stelle für den Wechsel zwischen Blut- und Nervensystem? Was leitet die Zellen nach dem Durchbrechen der Blut-Hirn-Schranke? Dies sind einige der Fragen, denen die Wissenschaftler als nächstes auf den Grund gehen wollen. Das langfristige Ziel ist es, neue Therapien und Medikamente für Krankheiten wie der Multiplen Sklerose zu entwickeln.

HINTERGRUNDINFORMATIONEN
Das Gehirn und das Rückenmark überwachen und steuern die Funktionen aller Körperteile und regeln die Bewegungen, die Sinne und das Verhalten des Organismus. Der Schutz des Gehirns und des Rückenmarks hat daher oberste Priorität. Schädelknochen und Wirbelsäule halten mechanische Verletzungen und äußere Einflüsse fern. Gefahren von innen, zum Beispiel im Blut zirkulierende Krankheitserreger, werden durch hoch spezialisierte Blutgefäße abgewehrt. Die Wände dieser Gefäße bilden eine Grenzbarriere, die Zellen und viele kleinere Partikel nicht passieren können - die empfindlichen Nervenzellen sind geschützt. Es gibt jedoch Ausnahmen. Bei Erkrankungen wie der Multiplen Sklerose (MS) gelingt es aggressiven Zellen des Immunsystems die Barriere der Blutgefäße zu durchbrechen. Einmal in das Hirngewebe eingedrungen richten diese Zellen großen Schaden an: Sie lösen Entzündungsreaktionen aus und greifen Nervenzellen an. Das Ergebnis sind vielfältige Beeinträchtigungen, unter denen alleine in Deutschland über 120 000 MS-Patienten leiden.
Originalveröffentlichung:
Ingo Bartholomäus*, Naoto Kawakami*, Francesca Odoardi, Christian Schläger, Djordje Miljkovic, Joachim W. Ellwart, Wolfgang EF Klinkert, Cassandra Flügel-Koch, Thomas B. Issekutz, Hartmut Wekerle, Alexander Flügel [*gleichrangiger Beitrag]

Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions, Nature 14. Oktober 2009

KONTAKT
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Presse- und Öffentlichkeitsarbeit
Telefon: 089 / 8578 3514, E-Mail: merker@neuro.mpg.de
Prof. Dr. Alexander Flügel
Universitätsmedizin Göttingen, Georg-August-Universität
Direktor der Abteilung Experimentelle und Klinische Neuroimmunologie / MS Hertie-Institut

Telefon: 0551 / 3913 348, E-Mail: imfs@med.uni-goettingen.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.msforschung.med.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie