Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährlichen Klumpen auf der Spur

21.07.2011
Maßgeschneiderte Oberflächen helfen, die Hintergründe von Krankheiten aufzudecken

Wenn sich im Körper ganz normale Proteine zu Eiweiß-Klumpen zusammenlagern, ist höchste Gefahr in Verzug. Denn solche „Amyloide“ genannten Klumpen hängen eng mit der Alzheimer-Krankheit und Typ 2-Diabetes zusammen, der früher Alterszuckerkrankheit genannt wurde. Wenn sie wüssten, wie sich die Proteine verklumpen, könnten Ärzte solche Krankheiten vielleicht besser behandeln. Dem Physiker Adrian Keller und seinen Kollegen vom Helmholtz-Zentrum Dresden-Rossendorf und der Universität im dänischen Aarhus ist jetzt ein wichtiger Schritt auf dem Weg dorthin gelungen.


Der Bildteil oben zeigt den Kontaktwinkel, der unten eine Raster-Kraft-Mikroskopie-Aufnahme der adsorbierten Oligomere auf einer hydrophoben Oberfläche. Adrian Keller

Eine zentrale Rolle spielt die Oberfläche der Zellen, auf denen sich die Proteine ablagern und verklumpen. Beim Typ 2-Diabetes bilden sich die Amyloide auf bestimmten Zellen der Bauchspeicheldrüse, bei der Alzheimer-Krankheit auf Gehirn-Zellen. Selbst mit modernen Hochleistungsgeräten lassen sich diese Vorgänge im Inneren des Körpers daher nicht beobachten. Naturwissenschaftler wie Adrian Keller, der zu Zeit am Interdisziplinären Nano-Wissenschaftszentrum „iNano“ in Aarhus forscht, versuchen daher, die Vorgänge mit echten Proteinen auf künstlichen Oberflächen im Labor ablaufen zu lassen.

Das klingt einfacher als es ist. Beeinflusst wird das Verklumpen offensichtlich stark von der Hydrophilie und Hydrophobie der Oberfläche. Hydrophile Oberfläche Substanzen werden gut, hydrophobe schlecht benetzt.

Adrian Keller ist es jetzt gelungen, die Oberfläche von Glimmer mit einer Apparatur am Helmholtz-Zentrum Dresden-Rossendorf maßzuschneidern. Dabei dringen langsame, positiv geladene Atome des Edelgases Argon mit niedriger Geschwindigkeit nur ein wenig in die Oberfläche des Kristalls ein. „So wird die Oberfläche chemisch aktiviert, die Rauigkeit ändert sich dabei kaum“, erklärt Adrian Keller den ersten Schritt des Maßschneiderns. Eine veränderte Rauigkeit würde nämlich ebenfalls die Bildung von Amyloiden stark beeinflussen.

Im zweiten Schritt lagert der Glimmer mit der aktivierten Oberfläche einfach einige Wochen in Schachteln im Labor. In dieser Zeit nimmt der Kristall aus der Luft langsam Kohlenwasserstoffe auf. Diese machen die zunächst hydrophile Oberfläche mit der Zeit immer stärker hydrophob, bis sie nach ungefähr drei Monaten vollständig „wasserabweisend“ ist.

In diesem Vierteljahr aber kann Adrian Keller seine Experimente machen und weiß jeweils genau, wie hydrophob der Glimmer gerade ist. Dabei gibt er ein „Amylin“ genanntes kleines Protein auf den Kristall. Bestimmte Zellen der Bauchspeicheldrüse produzieren diese Substanz gemeinsam mit Insulin. Entwickelt sich eine Diabetes-Typ 2-Erkrankung, reagiert der Organismus zunächst schlechter auf Insulin, das den Zuckerspiegel im Blut reguliert. Daraufhin produziert die Bauchspeicheldrüse mehr Insulin und gleichzeitig auch mehr Amylin. Dadurch steigt die Amylin-Konzentration und einige Amylin-Eiweiße klappen plötzlich in eine andere Form um. Dieser Vorgang ähnelt ein wenig einem Regenschirm, den ein kräftiger Windstoß hochklappen kann und so eine Art „Regenschüssel“ entstehen lässt.

Die ersten umgeklappten Eiweiße aber beeinflussen auch die Proteine in der Nachbarschaft und klappen dort weitere Amyline um. Die umgestülpten Eiweiße wiederum beginnen sich bald zusammenzuballen, Amyloide entstehen. Diese zerstören die Oberflächen einiger Zellen und senken so die Insulinproduktion. Daraufhin steigert der Organismus die Aktivität der verbliebenen Zellen und startet einen gefährlichen Kreislauf, der am Ende die gesamte Insulinproduktion lahmlegen kann.

Ist die Oberfläche im Experiment von Adrian Keller hydrophil, ballen sich die Amyline auf dem Glimmer zu „Fibrillen“ genannten Bündeln von Proteinen zusammen. Ist die Oberfläche dagegen einige Wochen gealtert und wird so hydrophober, entstehen winzige Klümpchen, die „Oligomere“ genannt werden. Über unterschiedliche Mechanismen zerstören sowohl Fibrillen wie auch Oligomere die Oberfläche der Zellen und setzen so die Insulinproduktion außer Gefecht. Mit den maßgeschneiderten Oberflächen der Dresdner Helmholtz-Forscher lässt sich das Verklumpen der Proteine nun erstmals detailliert beobachten. Eines Tages könnten so Wege entdeckt werden, das Zusammenballen und damit auch das Entstehen der Krankheit zu verhindern. Und das nicht nur bei Typ 2-Diabetes, sondern vielleicht auch bei der bisher unheilbaren Alzheimer-Erkrankung.

(Autor: Roland Knauer)

Publikationen
1. Adrian Keller u.a., The Journal of Chemical Physics, Band 134, Artikel 104705; DOI: 10.1063/1.3561292
http://jcp.aip.org/resource/1/jcpsa6/v134/i10/p104705_s1
2. Adrian Keller u.a.., ACSNano, Band 5, Seite 2770, DOI: 10.1021/nn1031998
http://pubs.acs.org/doi/abs/10.1021/nn1031998
Weitere Informationen
Dr. Adrian Keller
Interdisciplinary Nanoscience Center (iNANO) | Aarhus University
Tel.: +45 8942 3702 | E-Mail: adrian@inano.au.dk
Dr. Stefan Facsko
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 2987 | E-Mail: s.facsko@hzdr.de
Pressekontakt
Dr. Christine Bohnet | Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/
http://pubs.acs.org/doi/abs/10.1021/nn1031998

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise