Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährlichen Klumpen auf der Spur

21.07.2011
Maßgeschneiderte Oberflächen helfen, die Hintergründe von Krankheiten aufzudecken

Wenn sich im Körper ganz normale Proteine zu Eiweiß-Klumpen zusammenlagern, ist höchste Gefahr in Verzug. Denn solche „Amyloide“ genannten Klumpen hängen eng mit der Alzheimer-Krankheit und Typ 2-Diabetes zusammen, der früher Alterszuckerkrankheit genannt wurde. Wenn sie wüssten, wie sich die Proteine verklumpen, könnten Ärzte solche Krankheiten vielleicht besser behandeln. Dem Physiker Adrian Keller und seinen Kollegen vom Helmholtz-Zentrum Dresden-Rossendorf und der Universität im dänischen Aarhus ist jetzt ein wichtiger Schritt auf dem Weg dorthin gelungen.


Der Bildteil oben zeigt den Kontaktwinkel, der unten eine Raster-Kraft-Mikroskopie-Aufnahme der adsorbierten Oligomere auf einer hydrophoben Oberfläche. Adrian Keller

Eine zentrale Rolle spielt die Oberfläche der Zellen, auf denen sich die Proteine ablagern und verklumpen. Beim Typ 2-Diabetes bilden sich die Amyloide auf bestimmten Zellen der Bauchspeicheldrüse, bei der Alzheimer-Krankheit auf Gehirn-Zellen. Selbst mit modernen Hochleistungsgeräten lassen sich diese Vorgänge im Inneren des Körpers daher nicht beobachten. Naturwissenschaftler wie Adrian Keller, der zu Zeit am Interdisziplinären Nano-Wissenschaftszentrum „iNano“ in Aarhus forscht, versuchen daher, die Vorgänge mit echten Proteinen auf künstlichen Oberflächen im Labor ablaufen zu lassen.

Das klingt einfacher als es ist. Beeinflusst wird das Verklumpen offensichtlich stark von der Hydrophilie und Hydrophobie der Oberfläche. Hydrophile Oberfläche Substanzen werden gut, hydrophobe schlecht benetzt.

Adrian Keller ist es jetzt gelungen, die Oberfläche von Glimmer mit einer Apparatur am Helmholtz-Zentrum Dresden-Rossendorf maßzuschneidern. Dabei dringen langsame, positiv geladene Atome des Edelgases Argon mit niedriger Geschwindigkeit nur ein wenig in die Oberfläche des Kristalls ein. „So wird die Oberfläche chemisch aktiviert, die Rauigkeit ändert sich dabei kaum“, erklärt Adrian Keller den ersten Schritt des Maßschneiderns. Eine veränderte Rauigkeit würde nämlich ebenfalls die Bildung von Amyloiden stark beeinflussen.

Im zweiten Schritt lagert der Glimmer mit der aktivierten Oberfläche einfach einige Wochen in Schachteln im Labor. In dieser Zeit nimmt der Kristall aus der Luft langsam Kohlenwasserstoffe auf. Diese machen die zunächst hydrophile Oberfläche mit der Zeit immer stärker hydrophob, bis sie nach ungefähr drei Monaten vollständig „wasserabweisend“ ist.

In diesem Vierteljahr aber kann Adrian Keller seine Experimente machen und weiß jeweils genau, wie hydrophob der Glimmer gerade ist. Dabei gibt er ein „Amylin“ genanntes kleines Protein auf den Kristall. Bestimmte Zellen der Bauchspeicheldrüse produzieren diese Substanz gemeinsam mit Insulin. Entwickelt sich eine Diabetes-Typ 2-Erkrankung, reagiert der Organismus zunächst schlechter auf Insulin, das den Zuckerspiegel im Blut reguliert. Daraufhin produziert die Bauchspeicheldrüse mehr Insulin und gleichzeitig auch mehr Amylin. Dadurch steigt die Amylin-Konzentration und einige Amylin-Eiweiße klappen plötzlich in eine andere Form um. Dieser Vorgang ähnelt ein wenig einem Regenschirm, den ein kräftiger Windstoß hochklappen kann und so eine Art „Regenschüssel“ entstehen lässt.

Die ersten umgeklappten Eiweiße aber beeinflussen auch die Proteine in der Nachbarschaft und klappen dort weitere Amyline um. Die umgestülpten Eiweiße wiederum beginnen sich bald zusammenzuballen, Amyloide entstehen. Diese zerstören die Oberflächen einiger Zellen und senken so die Insulinproduktion. Daraufhin steigert der Organismus die Aktivität der verbliebenen Zellen und startet einen gefährlichen Kreislauf, der am Ende die gesamte Insulinproduktion lahmlegen kann.

Ist die Oberfläche im Experiment von Adrian Keller hydrophil, ballen sich die Amyline auf dem Glimmer zu „Fibrillen“ genannten Bündeln von Proteinen zusammen. Ist die Oberfläche dagegen einige Wochen gealtert und wird so hydrophober, entstehen winzige Klümpchen, die „Oligomere“ genannt werden. Über unterschiedliche Mechanismen zerstören sowohl Fibrillen wie auch Oligomere die Oberfläche der Zellen und setzen so die Insulinproduktion außer Gefecht. Mit den maßgeschneiderten Oberflächen der Dresdner Helmholtz-Forscher lässt sich das Verklumpen der Proteine nun erstmals detailliert beobachten. Eines Tages könnten so Wege entdeckt werden, das Zusammenballen und damit auch das Entstehen der Krankheit zu verhindern. Und das nicht nur bei Typ 2-Diabetes, sondern vielleicht auch bei der bisher unheilbaren Alzheimer-Erkrankung.

(Autor: Roland Knauer)

Publikationen
1. Adrian Keller u.a., The Journal of Chemical Physics, Band 134, Artikel 104705; DOI: 10.1063/1.3561292
http://jcp.aip.org/resource/1/jcpsa6/v134/i10/p104705_s1
2. Adrian Keller u.a.., ACSNano, Band 5, Seite 2770, DOI: 10.1021/nn1031998
http://pubs.acs.org/doi/abs/10.1021/nn1031998
Weitere Informationen
Dr. Adrian Keller
Interdisciplinary Nanoscience Center (iNANO) | Aarhus University
Tel.: +45 8942 3702 | E-Mail: adrian@inano.au.dk
Dr. Stefan Facsko
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 2987 | E-Mail: s.facsko@hzdr.de
Pressekontakt
Dr. Christine Bohnet | Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/
http://pubs.acs.org/doi/abs/10.1021/nn1031998

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik