Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährliche Bakterien in Biofilmen schneller identifizieren und therapieren

30.05.2016

Das Verknüpfungsprotein Lektin LecB eignet sich zur schnellen Diagnose von gefährlichen Pseudomonasstämmen und kann als Zielprotein für die Therapie genutzt werden

Pseudomonas aeruginosa ist ein hartnäckiger Problemkeim, der viele Krankenhausinfektionen verursacht. Die Bakterien befallen Wunden, Harnwege oder verschleimte Lungen und sind die Haupttodesursache von Mukoviszidose-Patienten. Pseudomonas-Bakterien bilden Biofilme, die sie vor Antibiotika schützen. Ein Großteil der Erreger ist außerdem gegen viele Antibiotika resistent.


Das Schema illustriert die Quervernetzung der Zuckerstrukturen auf den Oberflächen des Wirts, der Bakterien sowie der Exopolysaccharide im Biofilm = "Zement/Klebstoff" des Biofilms

A.Titz, HIPS Saarbrücken

Forscher des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) in Saarbrücken sind diesen Resistenzmechanismen auf der Spur. Bei der Sequenzierung von gefährlichen Pseudomonas-Stämmen aus klinischen Proben konnten nun die Verknüpfungsmoleküle in den Biofilmen, die Lektine, als biochemische Marker identifiziert werden.

Diese Marker erlauben das schnellere Erkennen von gefährlichen Bakterienstämmen und den Einsatz einer zugeschnittenen Therapie für den Patienten. Trotz der hohen Sequenzunterschiede, die zu dieser Markerfunktion führen, wurde gezeigt, dass die verschiedenen Lektin-Varianten vergleichbare Zuckerstrukturen binden. Somit kann mit Hilfe der Sequenz des Lektins eine Zuordnung zu den klinisch relevanten Pseudomonas-Stämmen erfolgen.

Gleichzeitig kann ein und derselbe Wirkstoff zum Aufbrechen des Biofilms genutzt werden. Die Forschungsarbeiten wurden im Rahmen des Deutschen Zentrums für Infektionsforschung (DZIF) und in Kooperation mit dem Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig sowie Partnern in Grenoble (Frankreich) und San Diego (USA) durchgeführt und gerade im Journal „Chemical Science“ veröffentlicht.

Die Behandlung von Infektionen mit P. aeruginosa ist sehr problematisch, denn durch die Bildung von Biofilmen ist der Keim sehr gut sowohl vor dem Immunsystem als auch vor Antibiotika geschützt. In einem Biofilm kann die Resistenz gegenüber Antibiotika um das 10 bis zu 1000-fache erhöht sein. Ziel der Forscher am Helmholtz-Institut für Pharmazeutische Forschung (HIPS) und am Helmholtz-Zentrum für Infektionsforschung (HZI) ist es deshalb, Substanzen zu entwickeln, die den bakteriellen Schutzwall angreifen können.

Im Fokus der Wissenschaftler stehen bestimmte Bausteine des Biofilms, die sogenannten Lektine. Diese Virulenzfaktoren spielen eine Rolle bei der Anheftung des Bakteriums an die Körperzellen und bei der Bildung eines Biofilms. „Die Lektine sind Proteinmoleküle, die die Bestandteile des Biofilms miteinander vernetzen können - sozusagen der Zement in der Mauer“, sagt Dr. Alexander Titz, Leiter der Nachwuchsgruppe „Chemische Biologie der Kohlenhydrate“ am HIPS in Saarbrücken.

„Die Lektine können an mehreren Stellen Zuckermoleküle wie Mannose oder Galaktose, die sich auf den Oberflächen der Bakterien und den Wirtszellen befinden, binden und diese dann verknüpfen.“ Diese Zuckermoleküle wollen sich die Forscher nun zunutze machen und sie chemisch so manipulieren, dass sie zu Lektin-Inhibitoren werden.

„Gelingt es uns, die Funktion der Lektine chemisch zu stören, verlieren die Bestandteile des Biofilms ihren Halt. Die Bakterien lösen sich aus der Lebensgemeinschaft heraus und werden für das Immunsystem und Antibiotika wieder sicht- und therapierbar“, sagt Titz. Dies ist ein aktueller Therapieansatz für biofilmbildende Pathogene und die damit zusammenhängenden chronischen Infektionen, der aufgrund seines Mechanismus Resistenzbildungen verhindern soll.

In einer Kooperation mit der HZI-Arbeitsgruppe „Molekulare Bakteriologie“ um Prof. Susanne Häußler wurde nun in einem nächsten Schritt die Erbinformation von 150 klinischen Isolaten von P. aeruginosa analysiert. Dabei wurden verschiedene Pseudomonas-Stämme, die sich in ihrer Biofilmbildung und ihrer Virulenz unterschieden, untersucht. Überraschendes Ergebnis war eine stark variierende Sequenz des Lektins LecB bei den Bakterienstämmen.

Damit könnte dieses Lektin sehr gut als biochemischer Marker eingesetzt werden, um die unterschiedlich pathogenen Bakterienfamilien zu klassifizieren. „Besonders auf Intensivstationen geht es um eine aussagekräftige Diagnostik, um zielgerichtet Therapien einleiten zu können. Zukünftig könnten nun die Lektine als Marker in der klinischen Diagnostik und in der Pharmazeutischen Industrie zum Erkennen von gefährlichen Pseudomonas-Stämmen herangezogen werden“, sagt Prof. Susanne Häußler.

Die Forscher gingen noch einen Schritt weiter. Sie verglichen außerdem die Strukturen und Bindungseigenschaften der Lektine der gefährlichen und der weniger gefährlichen Stämme. „Obwohl sich die Lektin-Sequenzen beider Pseudomonas-Familien in der Sequenz unterscheiden, binden sie unerwarteterweise trotzdem gleiche Moleküle. Daher können wir nun spezielle Zuckermoleküle designen, die gegen ein breites Spektrum von gefährlichen Pseudomonas-Stämmen wirken und die Biofilmbildung blockieren“, erklärt Titz.

Der Biofilm könnte auseinanderfallen und die Bakterien damit für antibiotische Medikamente angreifbar machen. Außerdem bestehe die Chance, dass diese Moleküle keine Resistenzen hervorrufen. Denn die Bakterien werden nicht getötet und einem Selektionsdruck ausgesetzt, wie das bei Antibiotika-Gabe der Fall ist.

Originalpublikation:
The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery: Roman Sommer, Stefanie Wagner, Annabelle Varrot, Corwin M. Nycholat, Ariane Khaledi, Susanne Häussler, James C. Paulson, Anne Imberty and Alexander Titz. Chem. Sci., 2016, Advance Article, DOI: 10.1039/C6SC00696E
Link: http://pubs.rsc.org/en/content/articlepdf/2016/SC/C6SC00696E

Sie finden diese Pressemitteilung und Bildmaterial auch auf unserer Internetseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/gefaehrl...

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Weitere Informationen:

https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/gefaehrl... - Link zur Pressemitteilung

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften