Gedränge in den Blutgefäßen

Ein mittlere Anzahl von roten Blutkörperchen und eine geringe Fließgeschwindigkeit (von links) drängen die weiße Blutzelle an den Rand der Kapillare. Quelle: Forschungszentrum Jülich

Weiße Blutzellen sind die Immunpolizisten unseres Körpers. In unseren Adern sausen sie durch die Gewebe und warten auf ihren Einsatzbefehl. Dann wandern sie durch die Wände der Blutgefäße in die erkrankte Region.

Welche Voraussetzungen dazu nötig sind, haben Jülicher Forscher nun erstmals mit Hilfe dreidimensionaler Computersimulationen quantitativ bestimmt. Ihre Erkenntnisse, die die renommierte Fachzeitschrift Soft Matter gerade als eine der interessantesten Veröffentlichungen des Jahres ausgezeichnet hat, können hilfreich für die Entwicklung von Mikrofluidik-Anwendungen, etwa für die Diagnostik von Krankheiten, sein.

Etwa fünf Liter Blut fließen in unseren Adern. Der Lebenssaft transportiert verschiedenste Blutbestandteile, darunter die weißen Blutzellen oder „Leukozyten“, in jeden Winkel unseres Körpers. Sie sind dafür zuständig, unerwünschte Stoffe unschädlich zu machen, zum Beispiel krankmachende Bakterien.

Erkrankte Gewebe senden dazu einen Botenstoff an die Leukozyten, der die zunächst kugelrunden Zellen veranlasst, ihre Form zu ändern, um durch enge Öffnungen in den Blutgefäßen dorthin gelangen zu können, wo sie benötigt werden. Doch wie gelangen die Zellen, die mit einer Geschwindigkeit von mehreren Millimetern pro Sekunde durch die feinsten Verästelungen unserer Arterien und Venen strömen, überhaupt zu den Gefäßwänden, obwohl sie keinen aktiven Antrieb besitzen? Mit Hilfe aufwändiger Computersimulationen gelang es Jülicher Forschern, diese umstrittene Frage nun zu beantworten.

Demnach werden die Leukozyten rein passiv an den Rand des Teilchenstroms in den Blutgefäßen befördert. Damit dies passiert, sind mehrere Faktoren wichtig: die Konzentration roter Blutzellen, die durch den sogenannten Hämatokrit-Wert angegeben wird, die Form und Größe der Zellen, sowie die Fließgeschwindigkeit. Die weißen Blutzellen kommen vergleichsweise selten vor und sind rund und starr.

Viel häufiger sind die roten Blutkörperchen. Sie sind etwas kleiner und diskusförmig. Diese Form führt dazu, dass bei bestimmten Hämatokrit-Werten und Fließgeschwindigkeiten, wie sie bei gesunden Menschen in den kleinen Verästelungen der Venen typisch sind, die roten Blutkörperchen überwiegend in der Mitte der Blutgefäße strömen und die weißen Blutzellen an den Rand drängen. So sind diese stets in Reichweite von Ankerproteinen in den Gefäßwänden, die bei Bedarf an die Leukozyten andocken und sie stoppen können.

Den Jülicher Physikern gelang es durch dreidimensionale Computersimulationen erstmals, dieses Phänomen auch zu quantifizieren. So konnten sie berechnen, ab wann Probleme auftauchen können, etwa bei zu hohem oder zu niedrigem Hämatokrit-Wert oder bei falscher Fließgeschwindigkeit, wie sie etwa bei Kranken vorkommen kann. Ihre Ergebnisse stimmen dabei mit einer Reihe vorhandener experimenteller Beobachtungen überein. Die Methode ermöglicht auch Vorhersagen, wie leicht Zellen ähnlicher Größe, zum Beispiel Tumorzellen, bei verschiedenen Kapillardurchmessern, Viskositäten oder Fließgeschwindigkeiten an die Gefäßwände gelangen können.

„Unsere Methode könnte auch für die Entwicklung neuer Technologien genutzt werden, etwa für die medizinische Diagnostik“, freuen sich Dr. Dmitry A. Fedosov und Prof. Gerhard Gompper vom Jülicher Institutsbereich Theorie der Weichen Materie und Biophysik. Die Krankheit Malaria zum Beispiel ist oft schwer nachzuweisen, weil es Zeiten gibt, in denen nur wenige Malariaerreger im Blut der Erkrankten zu finden sind. Um sie zuverlässig erkennen zu können, wäre es wünschenswert, die von Parasiten befallenen roten Blutzellen von den anderen Blutbestandteilen abtrennen und konzentrieren zu können.

„Weil Malaria-befallene rote Blutzellen andere Eigenschaften haben als gesunde, könnte dies durch geschickt aufgebaute Vorrichtungen aus Mikroröhrchen möglich sein, die die nahe der Gefäßwände fließenden Zellen abtrennen“, erläutern die Physiker, die Mitglieder des europäischen Forschungsprogramms „Microfluidics for label-free particle sorting“ sind. Dieses arbeitet unter anderem an der Entwicklung von Methoden zum Auftrennen unterschiedlicher Zellen aus Blutproben, ohne sie vorher markieren zu müssen.

Fedosov hat die genutzte Simulationsmethode federführend entwickelt. Mit dieser Methode können Blutströmungen unter verschiedensten Bedingungen genau beschreiben und vorhergesagt werden. 2012 verlieh ihm die Alexander von Humboldt-Stiftung einen der höchstdotierten deutschen Wissenschaftspreise, den Sofja Kovalevskaja-Preis.

Originalveröffentlichung:
White blood cell margination in microcirculation;
D. Fedosov, G. Gompper;
Soft Matter, 2014, Advance Article, DOI: 10.1039/C3SM52860J

Ansprechpartner:
Dr. Dmitry A. Fedosov, Forschungszentrum Jülich
Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-2972, E-Mail: d.fedosov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-03-27immuna…

Media Contact

Dipl.-Biologin Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer