Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedränge in den Blutgefäßen

31.03.2014

Jülicher Physiker quantifizieren einen Schritt der Immunantwort

Weiße Blutzellen sind die Immunpolizisten unseres Körpers. In unseren Adern sausen sie durch die Gewebe und warten auf ihren Einsatzbefehl. Dann wandern sie durch die Wände der Blutgefäße in die erkrankte Region.


Ein mittlere Anzahl von roten Blutkörperchen und eine geringe Fließgeschwindigkeit (von links) drängen die weiße Blutzelle an den Rand der Kapillare.

Quelle: Forschungszentrum Jülich


Ist die Zahl der roten Blutkörperchen zu niedrig und die Fließgeschwindigkeit zu hoch, schwimmt die weiße Blutzelle im Teilchenstrom mit und kann die Gefäßwand nicht erreichen.

Quelle: Forschungszentrum Jülich

Welche Voraussetzungen dazu nötig sind, haben Jülicher Forscher nun erstmals mit Hilfe dreidimensionaler Computersimulationen quantitativ bestimmt. Ihre Erkenntnisse, die die renommierte Fachzeitschrift Soft Matter gerade als eine der interessantesten Veröffentlichungen des Jahres ausgezeichnet hat, können hilfreich für die Entwicklung von Mikrofluidik-Anwendungen, etwa für die Diagnostik von Krankheiten, sein.

Etwa fünf Liter Blut fließen in unseren Adern. Der Lebenssaft transportiert verschiedenste Blutbestandteile, darunter die weißen Blutzellen oder "Leukozyten", in jeden Winkel unseres Körpers. Sie sind dafür zuständig, unerwünschte Stoffe unschädlich zu machen, zum Beispiel krankmachende Bakterien.

Erkrankte Gewebe senden dazu einen Botenstoff an die Leukozyten, der die zunächst kugelrunden Zellen veranlasst, ihre Form zu ändern, um durch enge Öffnungen in den Blutgefäßen dorthin gelangen zu können, wo sie benötigt werden. Doch wie gelangen die Zellen, die mit einer Geschwindigkeit von mehreren Millimetern pro Sekunde durch die feinsten Verästelungen unserer Arterien und Venen strömen, überhaupt zu den Gefäßwänden, obwohl sie keinen aktiven Antrieb besitzen? Mit Hilfe aufwändiger Computersimulationen gelang es Jülicher Forschern, diese umstrittene Frage nun zu beantworten.

Demnach werden die Leukozyten rein passiv an den Rand des Teilchenstroms in den Blutgefäßen befördert. Damit dies passiert, sind mehrere Faktoren wichtig: die Konzentration roter Blutzellen, die durch den sogenannten Hämatokrit-Wert angegeben wird, die Form und Größe der Zellen, sowie die Fließgeschwindigkeit. Die weißen Blutzellen kommen vergleichsweise selten vor und sind rund und starr.

Viel häufiger sind die roten Blutkörperchen. Sie sind etwas kleiner und diskusförmig. Diese Form führt dazu, dass bei bestimmten Hämatokrit-Werten und Fließgeschwindigkeiten, wie sie bei gesunden Menschen in den kleinen Verästelungen der Venen typisch sind, die roten Blutkörperchen überwiegend in der Mitte der Blutgefäße strömen und die weißen Blutzellen an den Rand drängen. So sind diese stets in Reichweite von Ankerproteinen in den Gefäßwänden, die bei Bedarf an die Leukozyten andocken und sie stoppen können.

Den Jülicher Physikern gelang es durch dreidimensionale Computersimulationen erstmals, dieses Phänomen auch zu quantifizieren. So konnten sie berechnen, ab wann Probleme auftauchen können, etwa bei zu hohem oder zu niedrigem Hämatokrit-Wert oder bei falscher Fließgeschwindigkeit, wie sie etwa bei Kranken vorkommen kann. Ihre Ergebnisse stimmen dabei mit einer Reihe vorhandener experimenteller Beobachtungen überein. Die Methode ermöglicht auch Vorhersagen, wie leicht Zellen ähnlicher Größe, zum Beispiel Tumorzellen, bei verschiedenen Kapillardurchmessern, Viskositäten oder Fließgeschwindigkeiten an die Gefäßwände gelangen können.

"Unsere Methode könnte auch für die Entwicklung neuer Technologien genutzt werden, etwa für die medizinische Diagnostik", freuen sich Dr. Dmitry A. Fedosov und Prof. Gerhard Gompper vom Jülicher Institutsbereich Theorie der Weichen Materie und Biophysik. Die Krankheit Malaria zum Beispiel ist oft schwer nachzuweisen, weil es Zeiten gibt, in denen nur wenige Malariaerreger im Blut der Erkrankten zu finden sind. Um sie zuverlässig erkennen zu können, wäre es wünschenswert, die von Parasiten befallenen roten Blutzellen von den anderen Blutbestandteilen abtrennen und konzentrieren zu können.

"Weil Malaria-befallene rote Blutzellen andere Eigenschaften haben als gesunde, könnte dies durch geschickt aufgebaute Vorrichtungen aus Mikroröhrchen möglich sein, die die nahe der Gefäßwände fließenden Zellen abtrennen", erläutern die Physiker, die Mitglieder des europäischen Forschungsprogramms "Microfluidics for label-free particle sorting" sind. Dieses arbeitet unter anderem an der Entwicklung von Methoden zum Auftrennen unterschiedlicher Zellen aus Blutproben, ohne sie vorher markieren zu müssen.

Fedosov hat die genutzte Simulationsmethode federführend entwickelt. Mit dieser Methode können Blutströmungen unter verschiedensten Bedingungen genau beschreiben und vorhergesagt werden. 2012 verlieh ihm die Alexander von Humboldt-Stiftung einen der höchstdotierten deutschen Wissenschaftspreise, den Sofja Kovalevskaja-Preis.

Originalveröffentlichung:
White blood cell margination in microcirculation;
D. Fedosov, G. Gompper;
Soft Matter, 2014, Advance Article, DOI: 10.1039/C3SM52860J

Ansprechpartner:
Dr. Dmitry A. Fedosov, Forschungszentrum Jülich
Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-2972, E-Mail: d.fedosov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-03-27immuna...

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz