Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedränge in den Blutgefäßen

31.03.2014

Jülicher Physiker quantifizieren einen Schritt der Immunantwort

Weiße Blutzellen sind die Immunpolizisten unseres Körpers. In unseren Adern sausen sie durch die Gewebe und warten auf ihren Einsatzbefehl. Dann wandern sie durch die Wände der Blutgefäße in die erkrankte Region.


Ein mittlere Anzahl von roten Blutkörperchen und eine geringe Fließgeschwindigkeit (von links) drängen die weiße Blutzelle an den Rand der Kapillare.

Quelle: Forschungszentrum Jülich


Ist die Zahl der roten Blutkörperchen zu niedrig und die Fließgeschwindigkeit zu hoch, schwimmt die weiße Blutzelle im Teilchenstrom mit und kann die Gefäßwand nicht erreichen.

Quelle: Forschungszentrum Jülich

Welche Voraussetzungen dazu nötig sind, haben Jülicher Forscher nun erstmals mit Hilfe dreidimensionaler Computersimulationen quantitativ bestimmt. Ihre Erkenntnisse, die die renommierte Fachzeitschrift Soft Matter gerade als eine der interessantesten Veröffentlichungen des Jahres ausgezeichnet hat, können hilfreich für die Entwicklung von Mikrofluidik-Anwendungen, etwa für die Diagnostik von Krankheiten, sein.

Etwa fünf Liter Blut fließen in unseren Adern. Der Lebenssaft transportiert verschiedenste Blutbestandteile, darunter die weißen Blutzellen oder "Leukozyten", in jeden Winkel unseres Körpers. Sie sind dafür zuständig, unerwünschte Stoffe unschädlich zu machen, zum Beispiel krankmachende Bakterien.

Erkrankte Gewebe senden dazu einen Botenstoff an die Leukozyten, der die zunächst kugelrunden Zellen veranlasst, ihre Form zu ändern, um durch enge Öffnungen in den Blutgefäßen dorthin gelangen zu können, wo sie benötigt werden. Doch wie gelangen die Zellen, die mit einer Geschwindigkeit von mehreren Millimetern pro Sekunde durch die feinsten Verästelungen unserer Arterien und Venen strömen, überhaupt zu den Gefäßwänden, obwohl sie keinen aktiven Antrieb besitzen? Mit Hilfe aufwändiger Computersimulationen gelang es Jülicher Forschern, diese umstrittene Frage nun zu beantworten.

Demnach werden die Leukozyten rein passiv an den Rand des Teilchenstroms in den Blutgefäßen befördert. Damit dies passiert, sind mehrere Faktoren wichtig: die Konzentration roter Blutzellen, die durch den sogenannten Hämatokrit-Wert angegeben wird, die Form und Größe der Zellen, sowie die Fließgeschwindigkeit. Die weißen Blutzellen kommen vergleichsweise selten vor und sind rund und starr.

Viel häufiger sind die roten Blutkörperchen. Sie sind etwas kleiner und diskusförmig. Diese Form führt dazu, dass bei bestimmten Hämatokrit-Werten und Fließgeschwindigkeiten, wie sie bei gesunden Menschen in den kleinen Verästelungen der Venen typisch sind, die roten Blutkörperchen überwiegend in der Mitte der Blutgefäße strömen und die weißen Blutzellen an den Rand drängen. So sind diese stets in Reichweite von Ankerproteinen in den Gefäßwänden, die bei Bedarf an die Leukozyten andocken und sie stoppen können.

Den Jülicher Physikern gelang es durch dreidimensionale Computersimulationen erstmals, dieses Phänomen auch zu quantifizieren. So konnten sie berechnen, ab wann Probleme auftauchen können, etwa bei zu hohem oder zu niedrigem Hämatokrit-Wert oder bei falscher Fließgeschwindigkeit, wie sie etwa bei Kranken vorkommen kann. Ihre Ergebnisse stimmen dabei mit einer Reihe vorhandener experimenteller Beobachtungen überein. Die Methode ermöglicht auch Vorhersagen, wie leicht Zellen ähnlicher Größe, zum Beispiel Tumorzellen, bei verschiedenen Kapillardurchmessern, Viskositäten oder Fließgeschwindigkeiten an die Gefäßwände gelangen können.

"Unsere Methode könnte auch für die Entwicklung neuer Technologien genutzt werden, etwa für die medizinische Diagnostik", freuen sich Dr. Dmitry A. Fedosov und Prof. Gerhard Gompper vom Jülicher Institutsbereich Theorie der Weichen Materie und Biophysik. Die Krankheit Malaria zum Beispiel ist oft schwer nachzuweisen, weil es Zeiten gibt, in denen nur wenige Malariaerreger im Blut der Erkrankten zu finden sind. Um sie zuverlässig erkennen zu können, wäre es wünschenswert, die von Parasiten befallenen roten Blutzellen von den anderen Blutbestandteilen abtrennen und konzentrieren zu können.

"Weil Malaria-befallene rote Blutzellen andere Eigenschaften haben als gesunde, könnte dies durch geschickt aufgebaute Vorrichtungen aus Mikroröhrchen möglich sein, die die nahe der Gefäßwände fließenden Zellen abtrennen", erläutern die Physiker, die Mitglieder des europäischen Forschungsprogramms "Microfluidics for label-free particle sorting" sind. Dieses arbeitet unter anderem an der Entwicklung von Methoden zum Auftrennen unterschiedlicher Zellen aus Blutproben, ohne sie vorher markieren zu müssen.

Fedosov hat die genutzte Simulationsmethode federführend entwickelt. Mit dieser Methode können Blutströmungen unter verschiedensten Bedingungen genau beschreiben und vorhergesagt werden. 2012 verlieh ihm die Alexander von Humboldt-Stiftung einen der höchstdotierten deutschen Wissenschaftspreise, den Sofja Kovalevskaja-Preis.

Originalveröffentlichung:
White blood cell margination in microcirculation;
D. Fedosov, G. Gompper;
Soft Matter, 2014, Advance Article, DOI: 10.1039/C3SM52860J

Ansprechpartner:
Dr. Dmitry A. Fedosov, Forschungszentrum Jülich
Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-2972, E-Mail: d.fedosov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-03-27immuna...

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics