Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedränge in den Blutgefäßen

31.03.2014

Jülicher Physiker quantifizieren einen Schritt der Immunantwort

Weiße Blutzellen sind die Immunpolizisten unseres Körpers. In unseren Adern sausen sie durch die Gewebe und warten auf ihren Einsatzbefehl. Dann wandern sie durch die Wände der Blutgefäße in die erkrankte Region.


Ein mittlere Anzahl von roten Blutkörperchen und eine geringe Fließgeschwindigkeit (von links) drängen die weiße Blutzelle an den Rand der Kapillare.

Quelle: Forschungszentrum Jülich


Ist die Zahl der roten Blutkörperchen zu niedrig und die Fließgeschwindigkeit zu hoch, schwimmt die weiße Blutzelle im Teilchenstrom mit und kann die Gefäßwand nicht erreichen.

Quelle: Forschungszentrum Jülich

Welche Voraussetzungen dazu nötig sind, haben Jülicher Forscher nun erstmals mit Hilfe dreidimensionaler Computersimulationen quantitativ bestimmt. Ihre Erkenntnisse, die die renommierte Fachzeitschrift Soft Matter gerade als eine der interessantesten Veröffentlichungen des Jahres ausgezeichnet hat, können hilfreich für die Entwicklung von Mikrofluidik-Anwendungen, etwa für die Diagnostik von Krankheiten, sein.

Etwa fünf Liter Blut fließen in unseren Adern. Der Lebenssaft transportiert verschiedenste Blutbestandteile, darunter die weißen Blutzellen oder "Leukozyten", in jeden Winkel unseres Körpers. Sie sind dafür zuständig, unerwünschte Stoffe unschädlich zu machen, zum Beispiel krankmachende Bakterien.

Erkrankte Gewebe senden dazu einen Botenstoff an die Leukozyten, der die zunächst kugelrunden Zellen veranlasst, ihre Form zu ändern, um durch enge Öffnungen in den Blutgefäßen dorthin gelangen zu können, wo sie benötigt werden. Doch wie gelangen die Zellen, die mit einer Geschwindigkeit von mehreren Millimetern pro Sekunde durch die feinsten Verästelungen unserer Arterien und Venen strömen, überhaupt zu den Gefäßwänden, obwohl sie keinen aktiven Antrieb besitzen? Mit Hilfe aufwändiger Computersimulationen gelang es Jülicher Forschern, diese umstrittene Frage nun zu beantworten.

Demnach werden die Leukozyten rein passiv an den Rand des Teilchenstroms in den Blutgefäßen befördert. Damit dies passiert, sind mehrere Faktoren wichtig: die Konzentration roter Blutzellen, die durch den sogenannten Hämatokrit-Wert angegeben wird, die Form und Größe der Zellen, sowie die Fließgeschwindigkeit. Die weißen Blutzellen kommen vergleichsweise selten vor und sind rund und starr.

Viel häufiger sind die roten Blutkörperchen. Sie sind etwas kleiner und diskusförmig. Diese Form führt dazu, dass bei bestimmten Hämatokrit-Werten und Fließgeschwindigkeiten, wie sie bei gesunden Menschen in den kleinen Verästelungen der Venen typisch sind, die roten Blutkörperchen überwiegend in der Mitte der Blutgefäße strömen und die weißen Blutzellen an den Rand drängen. So sind diese stets in Reichweite von Ankerproteinen in den Gefäßwänden, die bei Bedarf an die Leukozyten andocken und sie stoppen können.

Den Jülicher Physikern gelang es durch dreidimensionale Computersimulationen erstmals, dieses Phänomen auch zu quantifizieren. So konnten sie berechnen, ab wann Probleme auftauchen können, etwa bei zu hohem oder zu niedrigem Hämatokrit-Wert oder bei falscher Fließgeschwindigkeit, wie sie etwa bei Kranken vorkommen kann. Ihre Ergebnisse stimmen dabei mit einer Reihe vorhandener experimenteller Beobachtungen überein. Die Methode ermöglicht auch Vorhersagen, wie leicht Zellen ähnlicher Größe, zum Beispiel Tumorzellen, bei verschiedenen Kapillardurchmessern, Viskositäten oder Fließgeschwindigkeiten an die Gefäßwände gelangen können.

"Unsere Methode könnte auch für die Entwicklung neuer Technologien genutzt werden, etwa für die medizinische Diagnostik", freuen sich Dr. Dmitry A. Fedosov und Prof. Gerhard Gompper vom Jülicher Institutsbereich Theorie der Weichen Materie und Biophysik. Die Krankheit Malaria zum Beispiel ist oft schwer nachzuweisen, weil es Zeiten gibt, in denen nur wenige Malariaerreger im Blut der Erkrankten zu finden sind. Um sie zuverlässig erkennen zu können, wäre es wünschenswert, die von Parasiten befallenen roten Blutzellen von den anderen Blutbestandteilen abtrennen und konzentrieren zu können.

"Weil Malaria-befallene rote Blutzellen andere Eigenschaften haben als gesunde, könnte dies durch geschickt aufgebaute Vorrichtungen aus Mikroröhrchen möglich sein, die die nahe der Gefäßwände fließenden Zellen abtrennen", erläutern die Physiker, die Mitglieder des europäischen Forschungsprogramms "Microfluidics for label-free particle sorting" sind. Dieses arbeitet unter anderem an der Entwicklung von Methoden zum Auftrennen unterschiedlicher Zellen aus Blutproben, ohne sie vorher markieren zu müssen.

Fedosov hat die genutzte Simulationsmethode federführend entwickelt. Mit dieser Methode können Blutströmungen unter verschiedensten Bedingungen genau beschreiben und vorhergesagt werden. 2012 verlieh ihm die Alexander von Humboldt-Stiftung einen der höchstdotierten deutschen Wissenschaftspreise, den Sofja Kovalevskaja-Preis.

Originalveröffentlichung:
White blood cell margination in microcirculation;
D. Fedosov, G. Gompper;
Soft Matter, 2014, Advance Article, DOI: 10.1039/C3SM52860J

Ansprechpartner:
Dr. Dmitry A. Fedosov, Forschungszentrum Jülich
Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-2972, E-Mail: d.fedosov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-03-27immuna...

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik