Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gedächtnis auf der Spur

23.10.2013
Wiener Forscher beobachten das Gehirn beim Lernen und Erinnern

Ein Team um den Neurobiologen Simon Rumpel am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) verfolgt mit neuartigen mikroskopischen Techniken am lebenden Gehirn, wie sich Nervenzellen beim Lernen und Erinnern verhalten. Das US-Wissenschaftsjournal PNAS berichtet diese Woche über die Erkenntnisse.


Schnittpräparat der Hörrinde eines Maushirns. Eine einzelne Nervenzelle ist durch ein grün fluoreszierendes Protein markiert. Erregende Synapsen sind als sogenannte „dendritische Dornen“ entlang der Fortsätze deutlich erkennbar.

Copyright: IMP

Die meisten unserer Verhaltensweisen – und damit auch unsere Persönlichkeit – werden durch vorhergehende Erfahrungen beeinflusst und gestaltet. Diese Erfahrungen abzuspeichern und später darauf zurückgreifen zu können, ist daher eine der grundlegenden Hirnfunktionen höherer Organismen.

Die derzeitige Modellvorstellung der Neurowissenschaft geht davon aus, dass das Erlebte die plastischen Verbindungen zwischen den Nervenzellen – die Synapsen – verändert und dass diese Veränderungen als dauerhafte Gedächtnisspur im Gehirn erhalten bleiben.

Neurobiologen um Simon Rumpel und Kaja Moczulska gingen am IMP der Frage nach, was mit den synaptischen Verbindungen zwischen Nervenzellen passiert, wenn wir etwas lernen und wenn wir uns erinnern. Möglich wurde der experimentelle Ansatz durch die Entwicklung der Zwei-Photonenmikroskopie. Dieses bildgebende Verfahren erlaubt es, kleinste Strukturen (synaptische Verbindungen sind wenige tausendstel Millimeter groß) im lebenden Gehirn zu beobachten. Dabei ist es möglich, ein und dieselbe Nervenzelle mit ihren Fortsätzen wieder und wieder zu analysieren.

Beim Lernen sprießen neue Synapsen

Die IMP-Forscher konnten auf diese Weise einzelne Nervenzellen im Gehirn von Mäusen über mehrere Wochen hinweg beobachten. Sie konzentrierten sich dabei auf die dornenartigen Vorwölbungen an den Fortsätzen, die für erregende Synapsen charakteristisch sind. Dieser Ansatz wurde mit Verhaltensversuchen kombiniert, bei denen die Tiere auf Töne klassisch konditioniert wurden – ein Lernverfahren, das bereits vor hundert Jahren von Pavlov eingeführt wurde. In der Hörrinde des Gehirns führte die Lernerfahrung zur vermehrten Neubildung von synaptischen Verbindungen. Ein Teil davon blieb langfristig bestehen – ein Hinweis also auf eine neu angelegte Gedächtnisspur und die Bestätigung einer wichtigen Vorhersage des derzeit gültigen Modells.

Neben den plastischen Veränderungen beim Lernen interessierte die Wissenschaftler besonders auch der Vorgang des Erinnerns. Frühere Arbeiten hatten gezeigt, dass beim Abrufen der Erinnerung ähnliche molekulare Prozesse ablaufen wie bei der Gedächtnisbildung selbst. Dies wurde dahingehend interpretiert, dass die Gedächtnisspur bei jeder Erinnerung umgebaut und neu geschrieben wird.

Erinnern lässt Synapsen unverändert

Weitere Experimente am IMP sollten also klären, inwiefern das Abrufen des Gedächtnisses die synaptischen Verbindungen beeinflusst. Dazu bekamen die Mäuse den konditionierten Ton nach einem längeren Zeitraum wieder zu hören, während Nervenzellen in der Hörrinde beobachtet wurden. Es zeigte sich, dass einige molekulare Prozesse beim Erinnern denen bei der Bildung des Gedächtnisses durchaus ähnlich waren, die sichtbare Struktur der synaptischen Verbindungen jedoch unverändert blieb.

Dies deutet darauf hin, dass die molekularen Vorgänge, die bei der Bildung und beim Abruf des Gedächtnisses beobachtet werden, nicht notwendigerweise Veränderungen widerspiegeln. Sie könnten vielmehr Ausdruck der Stabilisierung von kürzlich veränderten oder erfolgreich abgerufenen synaptischen Verbindungen sein.

Die Erforschung der Prozesse bei der Bildung und beim Abruf von Gedächtnisinhalten dient in erster Linie dem elementaren Wissensgewinn. Die Erkenntnisse helfen aber auch, Erkrankungen des Nervensystems zu verstehen, die primär das Gedächtnis betreffen. Im weitesten Sinn könnten die molekularen Vorgänge bei der Erinnerung eine Grundlage liefern, die für die Behandlung schwer traumatisierter Patienten von Interesse ist.

Originalpublikation
Kaja Ewa Moczulska, Juliane Tinter-Thiede, Manuel Peter, Lyubov Ushakova, Tanja Wernle, Brice Bathellier und Simon Rumpel: Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. In: PNAS, online Early Edition, 22. Oktober 2013.
Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.
Rückfragehinweis:
Dr. Heidemarie Hurtl
IMP - Forschungsinstitut für Molekulare Pathologie
Communications
T +43-1-79730 3625
M +43 664 8247910
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten