Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fusionsprotein dirigiert Aufbau der Photosynthese-Plattform

08.05.2015

Kooperationsprojekt deckt Rolle eines Proteins bei Bildung und Erhalt des inneren Membransystems in Blaualgen und Chloroplasten auf

Chloroplasten sind die Kraftwerke in grünen Pflanzen. In inneren Membranen läuft hier die Photosynthese ab, einer der wichtigsten biologischen Prozesse auf der Erde, bei dem Lichtenergie in chemische Energie und Sauerstoff umgewandelt wird. Obwohl ihre bedeutende Funktion schon lange bekannt ist, war bislang nicht klar, wie es zum Aufbau des innenliegenden, spezifischen Membransystems kommt.


Ein IM30-Ring bindet an interne Membranen. Im Hintergrund ist der Ausschnitt einer elektronenmikroskopischen Aufnahme einer Blaualge zu sehen. Im Vordergrund ist ein 3-D-Modell des IM30-Rings gezeigt. Die Größenverhältnisse sind nicht maßstabsgetreu.

Quelle: Dirk Schneider

In einem Kooperationsprojekt haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) nun einen ersten Ansatzpunkt gefunden, wie diese Membranen gebildet werden. Demnach spielt das Protein IM30 eine entscheidende Rolle, indem es eine Fusion interner Membranen anstößt.

An den Untersuchungen über die Bedeutung von IM30 waren Biologen, Chemiker, Biochemiker und Biophysiker der JGU und des Max-Planck-Instituts für Polymerforschung maßgeblich beteiligt. Die Ergebnisse wurden soeben in der Zeitschrift Nature Communications veröffentlicht.

Chloroplasten sind Organellen, die in allen höheren Pflanzen und in Grünalgen vorkommen. Im ihrem Innern befindet sich ein Membransystem, die Thylakoidmembranen, in dem Schlüsselprozesse der Photosynthese ablaufen. „Ein detailliertes Verständnis der Photosynthese und der damit verbundenen molekularen Prozesse ist entscheidend, um unser Leben auf der Erde zu verstehen“, sagt Univ.-Prof. Dr. Dirk Schneider vom Institut für Pharmazie und Biochemie der JGU, der die Forschungsarbeit koordiniert hat.

„Aber trotz ihrer großen Bedeutung wissen wir fast nichts darüber, wie dieses spezielle Membransystem gebildet und aufrechterhalten wird.“ Bislang wurde in photosynthetischen Zellen noch kein einziges Fusionsprotein identifiziert, obwohl klar war, dass diese Klasse von Proteinen an der Bildung der Thylakoidmembran beteiligt sein muss.

Vor diesem Hintergrund hat die Mainzer Forschergruppe das Protein IM30 aus einer Blaualge, die als „frei lebender Chloroplast“ beschrieben werden kann, isoliert und untersucht. IM30 – „IM“ steht für „interne Membran“ und „30“ bezeichnet die atomare Masse von 30 Kilodalton – wurde Mitte der 1990er-Jahre erstmals beschrieben und es wurde gezeigt, dass es an interne Membranen bindet.

Die kombinierte Expertise der Arbeitsgruppen um Univ.-Prof. Dr. Dirk Schneider, Univ.-Prof. Dr. Jürgen Markl vom Institut für Zoologie der JGU und Prof. Dr. Tobias Weidner vom Max-Planck-Institut für Polymerforschung hat nun gezeigt, dass IM30 in einer Ringstruktur spezifisch an Phospholipide der Membranen andockt.

„Diese Bindung verändert die Membranstruktur und führt unter bestimmten Bedingungen zur Membranfusion“, erklärt Schneider. Entfernt man IM30, kommt es hingegen zu einem signifikanten Rückgang von Thylakoidmembranen und letztendlich zu einem Verlust der Lebensfähigkeit der Zellen. Das Fusionsprotein IM30 stellt somit einen Ausgangspunkt für die weitere Erforschung des neuartigen Fusionsmechanismus in den grünen Zellbestandteilen von Pflanzen und von Blaualgen dar.

Die interdisziplinäre Forschungsarbeit wurde maßgeblich von Doktoranden des Max Planck Graduate Center (MPGC) ausgeführt. Das MPGC wurde im Juni 2009 gegründet, um gemeinsame Projekte und Promotionen zwischen der Johannes Gutenberg-Universität Mainz und den beiden in Mainz ansässigen Max-Planck-Instituten für Polymerforschung und für Chemie zu fördern.

Veröffentlichung:
Raoul Hennig et al.
IM30 triggers membrane fusion in cyanobacteria and chloroplasts
Nature Communications, 8. Mai 2015
DOI: 10.1038/ncomms8018
http://www.nature.com/ncomms/2015/150508/ncomms8018/full/ncomms8018.html


Weitere Informationen:
Univ.-Prof. Dr. Dirk Schneider
Institut für Pharmazie und Biochemie – Therapeutische Lebenswissenschaften
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. 06131 39-25833
Fax 06131 39-25348
E-Mail: dirk.schneider@uni-mainz.de
http://www.bio.chemie.uni-mainz.de/46.php

Weitere Informationen:

http://www.uni-mainz.de/presse/65253.php - Pressemitteilung ;
http://www.bio.chemie.uni-mainz.de/46.php - Univ.-Prof. Dr. Dirk Schneider ;
http://www.bio.uni-mainz.de/zoo/312_DEU_HTML.php - Univ.-Prof. Dr. Jürgen Markl ;
http://www.mpip-mainz.mpg.de/89016/Dr_Tobias_Weidner - Prof. Dr. Tobias Weidner ;
http://www.nature.com/ncomms/index.html - Nature Communications

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau