Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Funktion der dendritischen Architektur von Nervenzellen beleuchtet

23.01.2015

Dendriten von Motorneuronen der Taufliege sind für grundlegende Funktionen entbehrlich, jedoch für die Feinkontrolle von Verhalten notwendig.

Dendriten sind Verästelungen von Nervenzellen, die Eingangssynapsen tragen. Schätzungsweise 100 Milliarden Neurone im menschlichen Gehirn bilden etwa 100 Billionen Synapsen an ungefähr 150.000 km Dendritenkabel. Eine zentrale Frage der neurobiologischen Grundlagenforschung ist, weshalb Nervenzellen derart viele Dendriten aufweisen.


(A) Beispiel der Struktur eines von insgesamt fünf Flügel-Senker-Motorneuronen der Taufliege Drosophila. (B) Verlust der Dendriten nach selektiver genetischer Manipulation dieser Motorneurone. (C) Das Tier kann auch mit drastischen dendritischen Defekten der Flügel-Senker-Motorneurone noch fliegen, aber Dendriten sind entscheidend für die Feinkontrolle motorischen Verhaltens.

Abb.: Abteilung Neurobiologie, JGU

Die gängigen Hypothesen reichen von der Bereitstellung einer ausreichend großen Oberfläche für synaptischen Eingang bis zur Ausbildung hochspezifischer Kompartimentierungen für die molekulare Signalgebung und neuronale Informationsverarbeitung. Strukturdefekte von Dendriten werden mit verschiedenen Gehirnerkrankungen in Verbindung gebracht wie etwa autistischen Störungen, Alzheimer-Demenz oder Schizophrenie. „Allerdings wissen wir oft nicht, ob strukturelle Defekte an Dendriten die Ursache oder die Folge von geschädigten Gehirnfunktionen sind“, erklärt Univ.-Prof. Dr. Carsten Duch.

In seiner Arbeitsgruppe an der Johannes Gutenberg-Universität Mainz (JGU) werden dendritische Strukturen und Funktionen anhand eines Modellorganismus, der Taufliege Drosophila, erforscht. Die experimentelle Herausforderung bei der Analyse der Rolle von Dendriten ist, diese selektiv an einigen identifizierten Nervenzellen mit bekannter Funktion zu manipulieren, ohne andere Eigenschaften dieser Nervenzellen oder andere Nervenzellen zu beeinträchtigen, um dann die resultierenden Funktionsverluste zu analysieren. Genau das haben Biologen in ihrer jüngsten Studie an Motorneuronen von Drosophila mit genetischen Tricks durchgeführt.

„Wir haben zu unserer Überraschung entdeckt, dass diese Motorneuron-Dendriten für die synaptische Ansteuerung, normale Aktivitätsmuster der Motorneurone im Verhalten und grundlegende Verhaltensleistungen entbehrlich sind“, teilen die beiden Erstautoren der Studie, Dr. Stefanie Ryglewski und Dr. Dimitrios Kadas, mit. Sorgfältige physiologische Studien und Verhaltensexperimente haben dann aber gezeigt, dass das Entfernen der Dendriten die funktionelle Feinkontrolle dieser Motorneurone beeinträchtigt. Das wiederum führt zu beträchtlichen Leistungseinbußen bei anspruchsvollem motorischen Verhalten wie etwa bei der Kontrolle der Flughöhe und dem Wechsel zwischen Gesangselementen beim Balzverhalten.

Die Wissenschaftler um Carsten Duch vom Institut für Zoologie haben damit zum ersten Mal einen direkten Hinweis gefunden, dass die dendritische Architektur notwendig ist, um evolutionär festgelegte Verhaltensabläufe, die für den Paarungserfolg und das Überleben zentral sind, zu steuern. Damit liefert die Studie einen Erklärungsansatz, weshalb ein positiver Selektionsdruck auf einer hochkomplexen neuronalen Struktur liegt. Weiterhin nimmt das Ausmaß der Funktionseinbußen von Drosophila-Motorneuronen mit dem Umfang der Schädigung der Dendriten zu. Eine solche Korrelation des Grades der dendritischen Defekte mit dem Ausmaß der neuronalen Störung findet man auch während fortschreitender struktureller Schädigungen bei progressiven neurologischen Erkrankungen.

Veröffentlichung:
Stefanie Ryglewski, Dimitrios Kadas et al.
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior
PNAS, 1. Dezember 2014
DOI: 10.1073/pnas.1416247111

Weitere Informationen:
Univ.-Prof. Dr. rer. nat. Carsten Duch
Abteilung Neurobiologie
Institut für Zoologie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-23419
Fax +49 6131 39-25443
E-Mail: cduch@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/760_DEU_HTML.php

Weitere Links:
http://www.pnas.org/content/early/2014/11/26/1416247111.short?rss=1 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Seltener Fund aus der Tiefsee
20.02.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wenn Elektronen Walzer tanzen
20.02.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics