Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Funktion der dendritischen Architektur von Nervenzellen beleuchtet

23.01.2015

Dendriten von Motorneuronen der Taufliege sind für grundlegende Funktionen entbehrlich, jedoch für die Feinkontrolle von Verhalten notwendig.

Dendriten sind Verästelungen von Nervenzellen, die Eingangssynapsen tragen. Schätzungsweise 100 Milliarden Neurone im menschlichen Gehirn bilden etwa 100 Billionen Synapsen an ungefähr 150.000 km Dendritenkabel. Eine zentrale Frage der neurobiologischen Grundlagenforschung ist, weshalb Nervenzellen derart viele Dendriten aufweisen.


(A) Beispiel der Struktur eines von insgesamt fünf Flügel-Senker-Motorneuronen der Taufliege Drosophila. (B) Verlust der Dendriten nach selektiver genetischer Manipulation dieser Motorneurone. (C) Das Tier kann auch mit drastischen dendritischen Defekten der Flügel-Senker-Motorneurone noch fliegen, aber Dendriten sind entscheidend für die Feinkontrolle motorischen Verhaltens.

Abb.: Abteilung Neurobiologie, JGU

Die gängigen Hypothesen reichen von der Bereitstellung einer ausreichend großen Oberfläche für synaptischen Eingang bis zur Ausbildung hochspezifischer Kompartimentierungen für die molekulare Signalgebung und neuronale Informationsverarbeitung. Strukturdefekte von Dendriten werden mit verschiedenen Gehirnerkrankungen in Verbindung gebracht wie etwa autistischen Störungen, Alzheimer-Demenz oder Schizophrenie. „Allerdings wissen wir oft nicht, ob strukturelle Defekte an Dendriten die Ursache oder die Folge von geschädigten Gehirnfunktionen sind“, erklärt Univ.-Prof. Dr. Carsten Duch.

In seiner Arbeitsgruppe an der Johannes Gutenberg-Universität Mainz (JGU) werden dendritische Strukturen und Funktionen anhand eines Modellorganismus, der Taufliege Drosophila, erforscht. Die experimentelle Herausforderung bei der Analyse der Rolle von Dendriten ist, diese selektiv an einigen identifizierten Nervenzellen mit bekannter Funktion zu manipulieren, ohne andere Eigenschaften dieser Nervenzellen oder andere Nervenzellen zu beeinträchtigen, um dann die resultierenden Funktionsverluste zu analysieren. Genau das haben Biologen in ihrer jüngsten Studie an Motorneuronen von Drosophila mit genetischen Tricks durchgeführt.

„Wir haben zu unserer Überraschung entdeckt, dass diese Motorneuron-Dendriten für die synaptische Ansteuerung, normale Aktivitätsmuster der Motorneurone im Verhalten und grundlegende Verhaltensleistungen entbehrlich sind“, teilen die beiden Erstautoren der Studie, Dr. Stefanie Ryglewski und Dr. Dimitrios Kadas, mit. Sorgfältige physiologische Studien und Verhaltensexperimente haben dann aber gezeigt, dass das Entfernen der Dendriten die funktionelle Feinkontrolle dieser Motorneurone beeinträchtigt. Das wiederum führt zu beträchtlichen Leistungseinbußen bei anspruchsvollem motorischen Verhalten wie etwa bei der Kontrolle der Flughöhe und dem Wechsel zwischen Gesangselementen beim Balzverhalten.

Die Wissenschaftler um Carsten Duch vom Institut für Zoologie haben damit zum ersten Mal einen direkten Hinweis gefunden, dass die dendritische Architektur notwendig ist, um evolutionär festgelegte Verhaltensabläufe, die für den Paarungserfolg und das Überleben zentral sind, zu steuern. Damit liefert die Studie einen Erklärungsansatz, weshalb ein positiver Selektionsdruck auf einer hochkomplexen neuronalen Struktur liegt. Weiterhin nimmt das Ausmaß der Funktionseinbußen von Drosophila-Motorneuronen mit dem Umfang der Schädigung der Dendriten zu. Eine solche Korrelation des Grades der dendritischen Defekte mit dem Ausmaß der neuronalen Störung findet man auch während fortschreitender struktureller Schädigungen bei progressiven neurologischen Erkrankungen.

Veröffentlichung:
Stefanie Ryglewski, Dimitrios Kadas et al.
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior
PNAS, 1. Dezember 2014
DOI: 10.1073/pnas.1416247111

Weitere Informationen:
Univ.-Prof. Dr. rer. nat. Carsten Duch
Abteilung Neurobiologie
Institut für Zoologie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-23419
Fax +49 6131 39-25443
E-Mail: cduch@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/760_DEU_HTML.php

Weitere Links:
http://www.pnas.org/content/early/2014/11/26/1416247111.short?rss=1 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering