Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fundamentaler biologischer Schaltmechanismus entdeckt

26.10.2009
Unzählige molekulare Schalter steuern die Stoffwechselvorgänge in biologischen Zellen, indem sie unterschiedlichste Reize weiterleiten. Verblüffenderweise besitzen die Schalter eine sehr einheitliche Molekülstruktur, obwohl jeder einzelne von ihnen nur auf ein einziges chemisches Signal reagiert.

Eine Erklärung dafür liefern jetzt Wissenschaftler des Forschungszentrums Dresden-Rossendorf (FZD). Sie entdeckten einen fundamentalen Schaltmechanismus, der im Laufe der Evolution trotz der hohen Spezialisierung in allen Schaltern erhalten geblieben ist. Die Ergebnisse erschienen kürzlich im "Journal of Biological Chemistry" (DOI: 10.1074/jbc.M109.002030).

Biologische Schalter - auch Rezeptoren genannt - sind komplexe Moleküle, die insbesondere in den Zellwänden sitzen. Sie ermöglichen die Reaktion einer Zelle auf äußere Reize, indem sie immer dann Stoffwechselvorgänge an- und abschalten, wenn eine entsprechende chemische Substanz an die Außenseite der Zelle bindet. Obwohl jeder Rezeptor nur auf eine ganz bestimmte Substanz anspricht, besitzen viele von ihnen einen sehr ähnlichen molekularen Aufbau. Das führte die FZD-Wissenschaftler zu der Annahme, dass den Rezeptoren ein einheitlicher Schaltmechanismus zugrunde liegen könnte. Um dies zu untersuchen, beschäftigten sie sich mit einem Rezeptortyp, der aus sieben Molekülbereichen besteht. Im Menschen sind etwa 1.000 solcher siebenteiligen Rezeptoren bekannt, wo sie als Schalter für Hormone, Neurotransmitter, Geruchsstoffe oder auch Licht arbeiten. Mehr als die Hälfte aller verschreibungspflichtigen Medikamente wirken auf Rezeptoren dieses Typs.

"Wir haben nachgewiesen, dass ein wichtiger Teil des Schaltvorgangs nicht direkt durch die chemische Struktur von Hormonen oder anderen reizauslösenden Substanzen bewirkt wird", so die FZD-Wissenschaftler Dr. Karim Fahmy und Sineej Madathil. Vielmehr spielt sich ein entscheidender Vorgang in einem Bereich des Rezeptors ab, den die Wissenschaftler "Protonen-Schalter" nennen, weil dafür Protonen, also positiv geladene Wasserstoffatome, eine zentrale Rolle spielen. Sie sind ein natürlicher Bestandteil von Wasser und daher auch im Zellinnern vorhanden. Der Schaltvorgang findet in einem Molekülteil statt, der an das Zellinnere grenzt, während die Erkennung chemischer Reize an der Außenseite des Rezeptors erfolgt. Die Forscher fanden heraus, dass der "Protonen-Schalter" wie in einem arbeitsteiligen Aufbau als eigenständiges Modul funktioniert.

"Im Laufe der Evolution musste dieser Schaltmechanismus also nicht für jeden neuen Botenstoff neu erfunden werden. Stattdessen blieb das erfolgreiche Modul im siebenteiligen Gesamtaufbau der Rezeptormoleküle erhalten, während sich die chemischen Erkennungsregionen an die verschiedensten Signale angepasst haben", erklärt Dr. Fahmy. Die äußeren chemischen Signale haben lediglich die Aufgabe, die Stelle des Rezeptors freizulegen, mit der die Protonen reagieren können.

Neben der grundlegenden medizinischen Bedeutung der Ergebnisse sehen die FZD-Forscher in dem von ihnen künstlich hergestellten, einfachen Protonen-Schalter ein großes Potenzial für Anwendungen im Bereich der Sensorik. So könnten Minilabore in Form künstlicher Zellen hergestellt werden, die über solche Schaltmechanismen mit ihrer Außenwelt kommunizieren - ein Vorgang, der u.a. in der Umweltanalytik zum Nachweis und der Entfernung von toxischen Substanzen eingesetzt werden könnte.

Veröffentlichung:
Madathil, S., Fahmy, K.: "Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G-protein-coupled receptors", in: Journal of Biological Chemistry 2009, 284: 28801-28809. (DOI: 10.1074/jbc.M109.002030)
Weitere Informationen:
Dr. Karim Fahmy
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Radiochemie
Tel.: 0351 260 - 2952
Email: k.fahmy@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.jbc.org/content/early/2009/08/25/jbc.M109.002030
http://www.fzd.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie