Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fundamentaler biologischer Schaltmechanismus entdeckt

26.10.2009
Unzählige molekulare Schalter steuern die Stoffwechselvorgänge in biologischen Zellen, indem sie unterschiedlichste Reize weiterleiten. Verblüffenderweise besitzen die Schalter eine sehr einheitliche Molekülstruktur, obwohl jeder einzelne von ihnen nur auf ein einziges chemisches Signal reagiert.

Eine Erklärung dafür liefern jetzt Wissenschaftler des Forschungszentrums Dresden-Rossendorf (FZD). Sie entdeckten einen fundamentalen Schaltmechanismus, der im Laufe der Evolution trotz der hohen Spezialisierung in allen Schaltern erhalten geblieben ist. Die Ergebnisse erschienen kürzlich im "Journal of Biological Chemistry" (DOI: 10.1074/jbc.M109.002030).

Biologische Schalter - auch Rezeptoren genannt - sind komplexe Moleküle, die insbesondere in den Zellwänden sitzen. Sie ermöglichen die Reaktion einer Zelle auf äußere Reize, indem sie immer dann Stoffwechselvorgänge an- und abschalten, wenn eine entsprechende chemische Substanz an die Außenseite der Zelle bindet. Obwohl jeder Rezeptor nur auf eine ganz bestimmte Substanz anspricht, besitzen viele von ihnen einen sehr ähnlichen molekularen Aufbau. Das führte die FZD-Wissenschaftler zu der Annahme, dass den Rezeptoren ein einheitlicher Schaltmechanismus zugrunde liegen könnte. Um dies zu untersuchen, beschäftigten sie sich mit einem Rezeptortyp, der aus sieben Molekülbereichen besteht. Im Menschen sind etwa 1.000 solcher siebenteiligen Rezeptoren bekannt, wo sie als Schalter für Hormone, Neurotransmitter, Geruchsstoffe oder auch Licht arbeiten. Mehr als die Hälfte aller verschreibungspflichtigen Medikamente wirken auf Rezeptoren dieses Typs.

"Wir haben nachgewiesen, dass ein wichtiger Teil des Schaltvorgangs nicht direkt durch die chemische Struktur von Hormonen oder anderen reizauslösenden Substanzen bewirkt wird", so die FZD-Wissenschaftler Dr. Karim Fahmy und Sineej Madathil. Vielmehr spielt sich ein entscheidender Vorgang in einem Bereich des Rezeptors ab, den die Wissenschaftler "Protonen-Schalter" nennen, weil dafür Protonen, also positiv geladene Wasserstoffatome, eine zentrale Rolle spielen. Sie sind ein natürlicher Bestandteil von Wasser und daher auch im Zellinnern vorhanden. Der Schaltvorgang findet in einem Molekülteil statt, der an das Zellinnere grenzt, während die Erkennung chemischer Reize an der Außenseite des Rezeptors erfolgt. Die Forscher fanden heraus, dass der "Protonen-Schalter" wie in einem arbeitsteiligen Aufbau als eigenständiges Modul funktioniert.

"Im Laufe der Evolution musste dieser Schaltmechanismus also nicht für jeden neuen Botenstoff neu erfunden werden. Stattdessen blieb das erfolgreiche Modul im siebenteiligen Gesamtaufbau der Rezeptormoleküle erhalten, während sich die chemischen Erkennungsregionen an die verschiedensten Signale angepasst haben", erklärt Dr. Fahmy. Die äußeren chemischen Signale haben lediglich die Aufgabe, die Stelle des Rezeptors freizulegen, mit der die Protonen reagieren können.

Neben der grundlegenden medizinischen Bedeutung der Ergebnisse sehen die FZD-Forscher in dem von ihnen künstlich hergestellten, einfachen Protonen-Schalter ein großes Potenzial für Anwendungen im Bereich der Sensorik. So könnten Minilabore in Form künstlicher Zellen hergestellt werden, die über solche Schaltmechanismen mit ihrer Außenwelt kommunizieren - ein Vorgang, der u.a. in der Umweltanalytik zum Nachweis und der Entfernung von toxischen Substanzen eingesetzt werden könnte.

Veröffentlichung:
Madathil, S., Fahmy, K.: "Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G-protein-coupled receptors", in: Journal of Biological Chemistry 2009, 284: 28801-28809. (DOI: 10.1074/jbc.M109.002030)
Weitere Informationen:
Dr. Karim Fahmy
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Radiochemie
Tel.: 0351 260 - 2952
Email: k.fahmy@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.jbc.org/content/early/2009/08/25/jbc.M109.002030
http://www.fzd.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen