Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fundamental neue Theorie für den Sehsinn

04.08.2015

Lebewesen könnten verschiedene Orientierungen visueller Reize auf die gleiche Weise wahrnehmen wie verschiedene Farben. Diese neue Theorie schlagen Prof. Trichur Vidyasagar von der University of Melbourne und Prof. Ulf Eysel von der Ruhr-Universität Bochum in der Zeitschrift „Trends in Neurosciences“ vor.

Die Idee: Die Zellen der Netzhaut arbeiten bereits als Detektoren für wenige ausgewählte Orientierungen, die je nach Anordnung eines Reizes im Raum unterschiedlich stark angesprochen werden. Aus dem Verhältnis ihrer Antworten berechnet das Gehirn die genau vorliegende Orientierung. Das gleiche Prinzip könnte auch der Wahrnehmung anderer Reizeigenschaften zugrunde liegen.


Neues Modell für den Sehsinn

Laut dem neuen Modell von Forschern aus Melbourne und Bochum könnten der Farb- und Orientierungswahrnehmung die gleichen neuronalen Mechanismen zugrunde liegen. Aus wenigen, ungenauen Informationen vom Auge errechnet das Gehirn eine Vielzahl sehr genauer Wahrnehmungen.

© T.R. Vidyasagar & S. Viswanathan, University of Melbourne

Drei Farbrezeptoren, aber Hunderte von wahrgenommenen Farben

Die Netzhaut besitzt nur drei Arten von Farbrezeptoren, die gemeinhin Rot-, Grün- und Blau-Zapfen genannt werden. Dennoch können wir Hunderte verschiedener Farben wahrnehmen. Licht einer bestimmten Farbe spricht die drei Zapfentypen unterschiedlich stark an. Das Gehirn erhält die Information, wie stark rote, blaue und grüne Zapfen aktiviert sind, und „berechnet“ aus dem Verhältnis die wahrgenommene Farbe. Das gleiche Prinzip könnte auch der Orientierungswahrnehmung zugrunde liegen, postulieren Vidyasagar und Eysel.

Wenige Detektoren erzeugen Wahrnehmung vieler Eigenschaften

Nach dem neuen Modell besitzt die Retina Detektoren, die auf horizontale, vertikale und radiale Orientierungen spezialisiert sind. Sie sind nur grob abgestimmt, können also auch andere Orientierungen wahrnehmen, aber antworten am stärksten auf horizontal, vertikal oder radial. Sehen wir eine diagonale Linie, werden horizontale und vertikale Detektoren gleich stark angesprochen.

Die radialen Detektoren können dann entscheiden, ob die Diagonale nach rechts oder links geneigt ist. Sehen wir eine vertikale Linie, werden hauptsächlich die vertikalen Detektoren angesprochen. Das Gehirn kombiniert die Informationen der Netzhautdetektoren. So können Nervenzellen im primären visuellen Kortex die genauen Orientierungen errechnen und besonders stark auf sie reagieren.

Kortex verfeinert Signale aus der Retina

Vidyasagar und Eysel vermuten, dass auch andere Stimuluseigenschaften auf diesem Weg wahrgenommen werden könnten, etwa die Geschwindigkeit von Bewegungen, die Größe von Objekten, helle und dunkle Schattierungen. Sie postulieren damit eine fundamental neue Theorie für die visuelle Wahrnehmung. Hubel und Wiesel, Nobelpreisträger des Jahres 1981, waren die ersten, die spezialisierte Zellen im visuellen Kortex fanden, etwa orientierungsselektive Zellen.

Sie nahmen an, dass diese Spezialisierung im primären visuellen Kortex entsteht, also auf der Eingangsstation für Informationen des Sehsinns im Gehirn. Nach der neuen Theorie von Vidyasagar und Eysel läge der Ursprung dafür aber bereits in der Retina; der Kortex würde die Signale aus der Netzhaut lediglich verfeinern. Das Modell aus Melbourne und Bochum basiert auf Ergebnissen der Forschung am Sehsinn der vergangenen 35 Jahre; viele Studien stammen aus den Laboren der beiden Autoren.

Titelaufnahme

T.R. Vidyasagar, U.T. Eysel (2015): Origins of feature selectivities and maps in the mammalian primary visual cortex, Trends in Neurosciences, DOI: 10.1016/j.tins.2015.06.003

Weitere Informationen

Prof. Dr. Ulf T. Eysel, Abteilung für Neurophysiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27350, E-Mail: eysel@rub.de

Prof. Trichur Vidyasagar, Visual & Cognitive Neuroscience Laboratory, University of Melbourne, E-Mail: sagar.t@unimelb.edu.au

Grafik im Netz

Eine Grafik zur neuen Theorie finden Sie online unter http://aktuell.ruhr-uni-bochum.de/pm2015/pm00108.html.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Detektoren Gehirn Grafik Kortex Melbourne Netzhaut Retina Sehsinn Zellen primary visual cortex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie