Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fundamental neue Theorie für den Sehsinn

04.08.2015

Lebewesen könnten verschiedene Orientierungen visueller Reize auf die gleiche Weise wahrnehmen wie verschiedene Farben. Diese neue Theorie schlagen Prof. Trichur Vidyasagar von der University of Melbourne und Prof. Ulf Eysel von der Ruhr-Universität Bochum in der Zeitschrift „Trends in Neurosciences“ vor.

Die Idee: Die Zellen der Netzhaut arbeiten bereits als Detektoren für wenige ausgewählte Orientierungen, die je nach Anordnung eines Reizes im Raum unterschiedlich stark angesprochen werden. Aus dem Verhältnis ihrer Antworten berechnet das Gehirn die genau vorliegende Orientierung. Das gleiche Prinzip könnte auch der Wahrnehmung anderer Reizeigenschaften zugrunde liegen.


Neues Modell für den Sehsinn

Laut dem neuen Modell von Forschern aus Melbourne und Bochum könnten der Farb- und Orientierungswahrnehmung die gleichen neuronalen Mechanismen zugrunde liegen. Aus wenigen, ungenauen Informationen vom Auge errechnet das Gehirn eine Vielzahl sehr genauer Wahrnehmungen.

© T.R. Vidyasagar & S. Viswanathan, University of Melbourne

Drei Farbrezeptoren, aber Hunderte von wahrgenommenen Farben

Die Netzhaut besitzt nur drei Arten von Farbrezeptoren, die gemeinhin Rot-, Grün- und Blau-Zapfen genannt werden. Dennoch können wir Hunderte verschiedener Farben wahrnehmen. Licht einer bestimmten Farbe spricht die drei Zapfentypen unterschiedlich stark an. Das Gehirn erhält die Information, wie stark rote, blaue und grüne Zapfen aktiviert sind, und „berechnet“ aus dem Verhältnis die wahrgenommene Farbe. Das gleiche Prinzip könnte auch der Orientierungswahrnehmung zugrunde liegen, postulieren Vidyasagar und Eysel.

Wenige Detektoren erzeugen Wahrnehmung vieler Eigenschaften

Nach dem neuen Modell besitzt die Retina Detektoren, die auf horizontale, vertikale und radiale Orientierungen spezialisiert sind. Sie sind nur grob abgestimmt, können also auch andere Orientierungen wahrnehmen, aber antworten am stärksten auf horizontal, vertikal oder radial. Sehen wir eine diagonale Linie, werden horizontale und vertikale Detektoren gleich stark angesprochen.

Die radialen Detektoren können dann entscheiden, ob die Diagonale nach rechts oder links geneigt ist. Sehen wir eine vertikale Linie, werden hauptsächlich die vertikalen Detektoren angesprochen. Das Gehirn kombiniert die Informationen der Netzhautdetektoren. So können Nervenzellen im primären visuellen Kortex die genauen Orientierungen errechnen und besonders stark auf sie reagieren.

Kortex verfeinert Signale aus der Retina

Vidyasagar und Eysel vermuten, dass auch andere Stimuluseigenschaften auf diesem Weg wahrgenommen werden könnten, etwa die Geschwindigkeit von Bewegungen, die Größe von Objekten, helle und dunkle Schattierungen. Sie postulieren damit eine fundamental neue Theorie für die visuelle Wahrnehmung. Hubel und Wiesel, Nobelpreisträger des Jahres 1981, waren die ersten, die spezialisierte Zellen im visuellen Kortex fanden, etwa orientierungsselektive Zellen.

Sie nahmen an, dass diese Spezialisierung im primären visuellen Kortex entsteht, also auf der Eingangsstation für Informationen des Sehsinns im Gehirn. Nach der neuen Theorie von Vidyasagar und Eysel läge der Ursprung dafür aber bereits in der Retina; der Kortex würde die Signale aus der Netzhaut lediglich verfeinern. Das Modell aus Melbourne und Bochum basiert auf Ergebnissen der Forschung am Sehsinn der vergangenen 35 Jahre; viele Studien stammen aus den Laboren der beiden Autoren.

Titelaufnahme

T.R. Vidyasagar, U.T. Eysel (2015): Origins of feature selectivities and maps in the mammalian primary visual cortex, Trends in Neurosciences, DOI: 10.1016/j.tins.2015.06.003

Weitere Informationen

Prof. Dr. Ulf T. Eysel, Abteilung für Neurophysiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27350, E-Mail: eysel@rub.de

Prof. Trichur Vidyasagar, Visual & Cognitive Neuroscience Laboratory, University of Melbourne, E-Mail: sagar.t@unimelb.edu.au

Grafik im Netz

Eine Grafik zur neuen Theorie finden Sie online unter http://aktuell.ruhr-uni-bochum.de/pm2015/pm00108.html.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Detektoren Gehirn Grafik Kortex Melbourne Netzhaut Retina Sehsinn Zellen primary visual cortex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops