Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Für den Notfall gewappnet: Neues Forschungsprojekt zum Einsatz von Flüssigkeitsbeatmung gestartet

13.01.2015

In der Science-Fiction ist das Verfahren schon längst Realität, in der Akutmedizin kommt sie selten zum Einsatz: Bei der sogenannten Flüssigkeitsbeatmung befindet sich in der Lunge keine Luft sondern eine Flüssigkeit. So können sehr hohe Mengen an Sauerstoff transportiert werden, während der Druck auf die Lunge gering ist.

Das Projekt „Instationärer Gastransport während der Flüssigkeitsbeatmung“ untersucht das Strömungsverhalten der Flüssigkeit in der Lunge – und liefert so wichtige Parameter für die Anwendung in der Medizin.


Dieses Lungenmodell wird im Projekt für die Simulation verwendet (c) TU Bergakademie Freiberg/Dr. Katrin Bauer

Flüssigkeitsbeatmung ist bereits aus dem Science-Fiction-Film „Abyss“ aus dem Jahr 1989 bekannt. Darin konnten Taucher mittels Flüssigkeitsbeatmung in Meerestiefen vordringen, die noch kein Mensch zuvor erreicht hatte. Denn mit Flüssigkeit in den Lungen wurde sie mit zunehmendem Wasserdruck in der Tiefe nicht zusammengedrückt.

Dieses Prinzip macht sich heute auch die Akutmedizin zu eigen: „Patienten mit Erkrankungen der Lunge können von der Flüssigkeitsbeatmung profitieren. Denn sie arbeitet mit weitaus geringeren Drücken als es bei der Überdruckbeatmung der Fall ist, die heute bei Atemnot meist angewandt wird“, erklärt Dr. Katrin Bauer vom Institut für Mechanik und Fluiddynamik.

Flüssigkeit in der Lunge – das mag zunächst ungewöhnlich klingen. Doch auch ein Fötus im Mutterleib hat solange er wächst Flüssigkeit in der Lunge. Forscher gehen also davon aus, dass Atmung auch mithilfe von speziell angereicherten Flüssigkeiten funktionieren kann. Allerdings ist das Verfahren bisher eine rein experimentelle Alternative zur Beatmung in der Akutmedizin, sie kommt etwa bei Frühgeborenen oder schwer lungenkranken Patienten zum Einsatz.

Dazu wird die Kohlenwasserstoffverbindung Perfluorcarbon (PFC) in die Lunge gepumpt. Diese Flüssigkeit ist für den Körper gesundheitlich unbedenklich und besitzt die Fähigkeit, sehr hohe Mengen an Sauerstoff zu lösen (ca. das 20-fache im Vergleich zu Wasser). „Die Idee dahinter ist, dass die vergleichsweise sehr hohe Schwerkraft der Flüssigkeit im Vergleich zur Luft viel einfacher in kollabierte Lungenbereiche eindringen kann, diese wieder öffnet und somit die Versorgung der ehemals kollabierten Lungenbereiche mit Sauerstoff wieder ermöglicht“, sagt Dr. Katrin Bauer.

Viele Parameter für den Einsatz der Flüssigkeitsbeatmung sind bislang jedoch unbekannt: Wie verteilt sich das PFC in der Lunge? Und wie verhalten sich wiederum die Atemgase Sauerstoff und Kohlendioxid im PFC? Diesen Fragen nimmt sich nun das Projekt „Instationärer Gastransport während der Flüssigkeitsbeatmung“ unter Leitung von Dr. Katrin Bauer an. Sie will den Transport von gelöstem Sauerstoff bei Flüssigkeitsbeatmung mit Perfluorcarbon durch ein Modell der oberen Atemwege untersuchen. Dafür kommen neuartige Methoden zum Einsatz, wie die bildgebende Messung der Sauerstoffkonzentration mittels sauerstoffsensitiver Tracer-Partikel.

„Analog zur Untersuchung der Sauerstoffverteilung soll auch das Strömungsverhalten der Flüssigkeit in der Lunge mittels optischer Messmethoden untersucht werden“, erläutert die Wissenschaftlerin das Vorgehen. „Nur wenn wir das Transportverhalten der gelösten Gase kennen, können wir die Beatmungsparameter bei der Flüssigkeitsbeatmung optimal einstellen.“

Das Projekt ist auf zwei Jahre angelegt und wird von der Deutschen Forschungsgemeinschaft (DFG) mit 200.000 Euro gefördert. Fachliche Beratung auf medizinischem Gebiet erhält das Projekt auch von Prof. Mario Rüdiger von der Neonatologie der TU Dresden, der intensiv auf dem Gebiet der Flüssigkeitsbeatmung forscht.

Weitere Informationen:

http://www.tu-freiberg.de

Madlen Domaschke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics