Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die fünf Finger der Vögel: Neue Forschungsergebnisse zur Evolution von Vögeln

02.01.2014
In der Regel haben Landwirbeltiere fünf Finger oder Zehen pro Hand oder Fuß.

Viele Tiergruppen haben im Laufe der Evolution diesen Bauplan allerdings abgewandelt. So haben etwa Paarhufer nur zwei oder vier Zehen. Ähnlich sind im Flügel der Vögel nur drei knochige Finger vorhanden.


Schematische Darstellung der Finger-Reduktion bei den Dinosauriervorfahren der Vögel.
Copyright: Brian Metscher

Dadurch stellt sich die Frage, um welche Finger es sich nun tatsächlich handelt: Daumen, Zeige- und Mittelfinger (I, II, III) oder Zeige-, Mittel- und Ringfinger (II, III, IV). Theoretische Biologen der Universität Wien haben dies geklärt und publizieren dazu aktuell im Journal of Experimental Zoology.

Bei den meisten Tetrapoden (Landwirbeltieren) ist der erste Finger, der embryonal angelegt wird, der vierte (Ringfinger). Auch bei Vögeln wird der Finger auf der Handaußenseite (posterior) als erster angelegt, was dafür spricht, dass es sich dabei um den Ringfinger handelt. Es konnte jedoch nachgewiesen werden, dass auch anterior – also auf der Handinnenseite – eine embryonale Fingeranlage vorhanden ist, die allerdings schnell wieder verschwindet. Diese Daten sprechen für eine Identifizierung der Finger als Zeige-, Mittel- und Ringfinger (II, III, IV).

Allerdings ähneln die drei Finger von Archaeopteryx – dem frühesten bekannten Vogel –, denen der Dinosaurierart Deinonychus, mit der er wohl nahe verwandt war. Fossilreihen belegen die Reduktion von zwei Fingern an der posterioren Seite der Hand unter den Vorfahren von Deinonychus und stützen damit die Daumen, Zeige- und Mittelfinger-Identifizierung (I, II, III) der Vogelfinger. Auch entsprechen die Genexpressionsmuster des vordersten Vogelfingers denen des Daumens bei anderen Tieren und nicht denen des Zeigefingers.

Um diesen Widerspruch zu lösen, waren bisher drei Ansätze vorherrschend: 1. Vögel stammen nicht von den Dinosauriern ab, 2. die Dinosauriervorfahren der Vögel hatten ebenfalls die drei mittleren Finger oder 3. die drei vorderen Finger der Vögel wurden irgendwie auf die drei mittleren embryonalen Positionen verschoben. Fakt ist, dass keine dieser Theorien alle vorhandenen Daten erklären kann.

Vögel: Daumen, Zeige- und Mittelfinger sind eigentlich Zeige-, Mittel- und Ringfinger

"Das Erscheinungsbild – der sogenannte Phänotyp – der Finger wird während der Embryonalentwicklung vom Protein Sonic Hedgehog bestimmt, das von der posterioren Handseite ausgeht. Das bedeutet einfach gesagt, dass die Konzentration des Proteins auf der Handaußenseite am höchsten ist und Richtung Handinnenseite abnimmt. Die verschiedenen Fingeranlagen passen daher ihre Genexpression – und in Folge auch ihren Phänotyp – der Sonic Hedgehog-Konzentration in ihrem Umfeld an. Wir haben einen darauf basierenden molekular-biomechanischen Mechanismus erdacht, der in der Lage ist, alle vorhandenen Daten zu erklären ", so Erstautor Daniel Capek, der in der Gruppe von Brian Metscher vom Department für Theoretische Biologie der Universität Wien zu diesem Projekt forschte und derzeit als PhD-Student am IST Austria tätig ist.

Nach dieser Hypothese fand in der Dinosaurier-Evolution zunächst tatsächlich eine Posterior-Reduktion statt, bei der anfangs der kleine Finger reduziert wurde und dann wegfiel sowie der Ringfinger teilreduziert wurde. Es ist allerdings deutlich leichter, die beiden äußeren Finger zu reduzieren als zentralere, da diese in der Entwicklung als letztes angelegt werden. Folglich wurde statt des vierten der erste Finger reduziert, und die übrigen Finger nutzten den zur Verfügung stehenden Platz aus, indem sie weiter nach innen wuchsen. Dies führte schließlich dazu, dass diese Finger eine veränderte Sonic Hedgehog-Konzentration vorfinden und ihre Entwicklung dieser anpassen.

"Dieser Mechanismus erklärt, warum die Finger von Archaeopteryx und moderner Vögel die Form der anterioren Finger I, II, III haben, obwohl sie eigentlich die zentralen Finger II, III, IV sind. Gleichzeitig stimmt diese Hypothese mit dem fossilen Befund und den aktuellen entwicklungsgenetischen Resultaten überein", resümiert Brian Metscher vom Department für Theoretische Biologie der Universität Wien.

Publikation im Journal of Experimental Zoology:
Čapek, D., Metscher, B. D., and Müller, G. B.: Thumbs Down: A Molecular-Morphogenetic Approach to Avian Digit Homology. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), December 2013. DOI: 10.1002/jez.b.22545

http://onlinelibrary.wiley.com/doi/10.1002/jez.b.22545/pdf

Wissenschaftliche Kontakte
Dr. Brian Metscher
Department für Theoretische Biologie
Universität Wien
1090 Wien, Althanstrasse 14
T +43-1-4277-567 04
brian.metscher@univie.ac.at
http://theoretical.univie.ac.at/people/metscher/
Mag. Daniel Capek, MSc
IST Austria
3400 Klosterneuburg
T +43-224-39000-7438
daniel.capek@ist.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten