Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieso wir fünf Finger an einer Hand haben – oder eben nicht

03.04.2012
Die fünf Finger einer Hand sind ein entwicklungsbiologisches Merkmal, das die kulturelle Entwicklung des Menschen – etwa bei der Einführung des Dezimalsystems – massgeblich beeinflusst hat.
Die Forschungsgruppe von Prof. Rolf Zeller am Departement Biomedizin der Universität Basel hat nun einen molekularen Regler gefunden, der im Embryo die Bildung der fünf unterschiedlichen Finger einer Hand steuert. Störungen dieses Regelkreises können zu angeborenen Missbildungen oder Besonderheiten wie überzählige Finger und Zehen führen.

In Embryos gibt es während der Organentwicklung präzise Zeitfenster, in denen sich die Vorläuferzellen von Geweben und Organen rapide vermehren, um genug Zellen zur Organbildung zu generieren. Im Gegensatz zu Tumoren sind diese Zellteilungen jedoch strikt geregelt, sodass genügend, aber nicht zu viele Zellen zur Bildung von Organen und Geweben vorhanden sind. Dr. Javier Lopez-Rios und Kollegen aus der Forschungsgruppe von Prof. Rolf Zeller konnten nun nachweisen, dass bei der Bildung von fünf Fingern der Transkriptionsfaktor GLI3 während des rasanten Wachstums der embryonalen Extremitätenknospen die Balance zwischen Zellteilung (Proliferation) und Differenzierung steuert. Die Proliferation wird dabei von GLI3 gezielt gebremst und mit der Zelldifferenzierung zeitlich und räumlich eng verknüpft. Die Studie, die auch zeigt, wie Störungen der Zellproliferation zu angeborenen Missbildungen führen, wurde in der Zeitschrift «Developmental Cell» veröffentlicht.

Polydaktylien sind relativ häufig
In der Vergangenheit wurden vor allem molekulare Netzwerke studiert, welche die Proliferation und Musterbildung der embryonalen Vorläufer- und Stammzellen kontrollieren. Hingegen sind Prozesse weniger gut verstanden, welche die proliferative Expansion der Vorläuferzellen beenden und die Zelldifferenzierung einleiten. Es ist jedoch klar, dass im Embryo die Zeitfenster für die Proliferation von bestimmten Vorläuferzellen streng reguliert sind und dass Abweichungen davon zu angeborenen Missbildungen führen, zum Beispiel zur Bildung eines zusätzlichen Fingers – einer sogenannten Polydaktylie. Bei Menschen treten Polydaktylien mit einer Wahrscheinlichkeit von einem Fall in 500–1000 Neugeborenen relativ häufig auf. Ein berühmtes Beispiel sind die polydaktilen Katzen des Schriftstellers Ernest Hemingway mit sechs Zehen.

Anomalien in Musterbildung und Koordination
In Mäuseembryonen hat das gezielte Abschalten des GLI3-Transkriptionsfaktors drastische Folgen: Statt fünf bilden sich bis zu acht Finger pro Vorderpfote. Zellers Gruppe fand nun heraus, dass GLI3 normalerweise eine Doppelfunktion hat, indem es die Zellproliferation so bremst, dass nicht zu viele Vorläuferzellen gebildet werden und gleichzeitig deren Differenzierung in die Anlagen der fünf Finger zum richtigen Zeitpunkt auslöst. Fehlt GLI3 in der Extremitätenknospe von Mäuseembryonen, werden zu viele Vorläuferzellen produziert, und ihre Differenzierung verzögert sich, sodass zusätzliche Finger angelegt werden. GLI3 koordiniert also die Proliferation und Differenzierung von Zellen sowohl zeitlich als auch räumlich.
Beim Menschen führen Mutationen im GLI3-Gen zu verschiedenen Syndromen (Missbildungen in verschiedenen Geweben) und Polydaktylien. Die Analyse von GLI3 in Mäuseembryonen zeigt nun, dass diese angeborenen Missbildungen – anders als bisher meist angenommen – nicht unbedingt eine Konsequenz von fehlerhafter Musterbildung sind, sondern auch durch Anomalien in der Koordination von Proliferation und Differenzierung entstehen. Da Mutationen im vom GLI3 gesteuerten molekularen Netzwerk bei Kindern und Erwachsenen zu bösartigen Tumoren führen können, tragen die Resultate dieser Studie auch zum Verständnis der Veränderungen bei, die zur unkontrollierten Proliferation von Tumorzellen führen.

Originalbeitrag
Lopez-Rios et al.
GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis
Developmental Cell (2012) | doi:10.1016/j.devcel.2012.01.006

Weitere Auskünfte
Prof. Rolf Zeller, Departement Biomedizin, Universität Basel, Tel. +41 (0)61 695 30 33, E-Mail: Rolf.Zeller@unibas.ch

Christoph Dieffenbacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://www.cell.com/developmental-cell/abstract/S1534-5807%2812%2900040-8

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics