Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fresszellen bekämpfen Eindringlinge im Schwarm

27.05.2013
Das Immunsystem schlägt immer dann Alarm, wenn Krankheitserreger eindringen. Fresszellen locken sich dann gegenseitig an und bilden große Schwärme, um die Eindringlinge gemeinsam zu bekämpfen.

Einem Team von US-Forschern unter der Beteiligung von Dr. Wolfgang Kastenmüller, mittlerweile Gruppenleiter an der Universität Bonn, ist es nun gelungen, die molekularen Grundlagen dieser Hilferufe zu entschlüsseln. Die Ergebnisse werden in der aktuellen Ausgabe des renommierten Fachjournals „Nature“ vorgestellt.


Fluoreszierende Neutrophile nach Infektion mit Pseudomonas: Neutrophilenschwärme sind weiß dargestellt, einzelne Neutrophile dagegen orange. Das obere Bild zeigt große Schwärme in einer intakten Maus, das untere orientierungslose, kleinere Schwärme in einer Maus, die über keinen LTB4-Rezeptor verfügt. Beide Bilder wurden 40 Minuten nach Beginn der Aufnahmen mit dem Mikroskop aufgezeichnet.
(c) Foto: Wolfgang Kastenmüller/Uni Bonn

Neutrophile Granulozyten, kurz „Neutrophile“, sind ein wichtiger Teil der Immunabwehr. Sie zählen zu den weißen Blutkörperchen und können als „Fresszellen“ zum Beispiel Eindringlinge zerstören und verletzte Gewebeteile verdauen. Neutrophile werden im Knochenmark gebildet und mit dem Blutstrom im Körper verteilt. „Wie Streifenpolizisten wachen sie darüber, ob etwa Krankheitserreger eingedrungen sind oder ob Gewebe zu Schaden gekommen ist“, berichtet Dr. Wolfgang Kastenmüller vom Institut für Molekulare Medizin und Experimentelle Immunologie der Universität Bonn. In der Blutbahn sind diese „Polizisten“ wie auf einer Autobahn besonders schnell unterwegs, sie können auf ihrer Jagd nach Erregern aber auch ins Gewebe eindringen.

Fresszellen reagieren wie die Polizei bei einem Großeinsatz

Während ihrer „Fahndung“ agieren die Neutrophilen wie die Polizei bei einem Großeinsatz: Hat eine der Fresszellen einen Erreger gefunden, ruft sie wie über Polizeifunk ihre Kollegen zur Hilfe. Daraufhin finden sich ganze Schwärme von Fresszellen zusammen, die gemeinsam die Eindringlinge bekämpfen. „Wie sich Neutrophile im Gewebe orientieren und diese faszinierenden Schwärme bilden, war zum Beginn unserer Arbeit weitgehend unbekannt“, berichten Dr. Tim Lämmermann und Dr. Ronald Germain, leitende Wissenschaftler dieser Studie an den National Institutes of Health in Bethesda (USA).

Deshalb untersuchte ein Team aus Wissenschaftlern des National Institute of Allergy and Infectious Diseases (NIAID) und des National Cancer Institute (NCI) unter Beteiligung von Dr. Kastenmüller systematisch die molekularen Grundlagen dieses Neutrophilen-Schwarmverhaltens.

Nach den Ergebnissen der Wissenschaftler sind mehrere Moleküle an der Zusammenballung zu einem Schwarm beteiligt. Dabei kommt jedoch der Substanz „LTB4“, welche an einen Rezeptor an der Oberfläche der Fresszellen andockt, eine Schlüsselrolle zu. Bei LTB4 handelt es sich um ein Leukotrien, das Entzündungsreaktionen des Körpers einleitet und aufrechterhält. Die Neutrophilen können selbst das LTB4 ausschütten, um ihre Kollegen anzulocken. Umgekehrt nehmen die Fresszellen es über ihre Rezeptoren war, sobald ein anderer Neutrophile damit zur Hilfe ruft.

Filmaufnahmen mit Spezialmikroskopen

Die Forscher fahndeten nach der gesuchten Substanz, indem sie bei Mäusen systematisch Gene für die Ausbildung verschiedener Rezeptoren ausschalteten, die für die Wanderung dieser Zellen wichtig sind. An diese verschiedenen Rezeptoren docken jeweils Stoffe an, die wie ein Schlüssel ins Schloss passen. Mit speziellen Mikroskopen - sogenannten Zwei-Photonen-Mikroskopen - beobachteten die Forscher, wie sich Neutrophilen-Schwärme um einen 0,01 Millimeter kleinen hitzebedingten Schaden bildeten, und hielten dies als Filmaufnahmen fest. „Fehlte der Rezeptor für das LTB4, konnten wir kaum Schwarmverhalten beobachten, weil nur sehr wenige Neutrophile angelockt werden konnten – damit war uns klar, dass wir ein äußerst wichtiges Schlüssel-Schloss-Paar in der Signalkette gefunden hatten“, sagt Dr. Lämmermann.

Die Frage war, ob die Fresszellen bei einer Infektion genauso reagierten wie bei dem Hitzeschaden. Dr. Kastenmüller testete dies, indem er Mäusen Bakterien unter die Haut spritzte und mit den Spezialmikroskopen das Verhalten der Fresszellen im drainierenden Lymphknoten aufzeichnete. In den Filmaufnahmen ist deutlich zu erkennen, dass sich die leuchtend markierten Neutrophilen in Form eines Schwarms zusammenballen, wenn das LTB4 an die Fresszellen andockt.

Über die genaue Funktion des Neutrophilen-Schwarmverhaltens können die Forscher momentan nur spekulieren. „Die Zusammenballung zu einem Schwarm ermöglicht eine sehr hohe lokale Konzentration an antibakteriellen Wirkstoffen, die durch die Neutrophilen ausgeschüttet werden. Wir vermuten daher, dass somit der Verbreitung von Keimen entgegengewirkt wird“, sagt Dr. Kastenmüller. Interessanterweise lösen sich die Schwärme nach einiger Zeit wieder auf, um sich gelegentlich an anderen Stellen neu zu bilden. Möglicherweise wird auf diese Weise unerwünschter Gewebeschaden durch Neutrophile verhindert. „Es gibt noch viele offene Fragen. Mit unserer Studie haben wir einen ersten Schritt getan, dieses Neutrophilen-Verhalten im Gewebe ein wenig besser zu verstehen“, sagt Dr. Lämmermann. In zukünftigen Arbeiten wollen die Forscher weiter das Schwarmverhalten untersuchen und testen, ob man es therapeutisch manipulieren kann, um entweder die Immunabwehr zu stärken oder chronische Entzündungen zu lindern.

Das Exzellenzcluster ImmunoSensation

Durch seinen Umzug an das Institut für Molekulare Medizin und Experimentelle Immunologie (IMMEI) im Januar 2013 ermöglicht Dr. Kastenmüller mit seiner Expertise für Zwei-Photonen-Mikroskopie von immunologischen Prozessen nun ähnliche Studien an der Universität Bonn. Dr. Kastenmüller ist Mitglied des Exzellenzclusters ImmunoSensation an der Universität Bonn, das von der Exzellenzinitiative in einer ersten Laufzeit von fünf Jahren mit insgesamt 28 Millionen Euro gefördert wird. Zusammen mit dem Forschungszentrum caesar und dem Deutschen Zentrum für Neurodegenerative Erkrankungen sowie weiteren wissenschaftlichen Partnern untersucht das Exzellenzcluster das Immunsystem als Sinnesorgan und dessen enge Verknüpfung mit dem Nervensystem und dem Stoffwechsel.

Publikation: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo, Nature, DOI: 10.1038/nature12175

Kontakt:

Zum Thema Zwei-Photonen-Mikroskopie:
Dr. Wolfgang Kastenmüller
Institut für Molekulare Medizin und Experimentelle Immunologie
Universität Bonn
Tel.: 0228/28711040
E-Mail: wkastenm@uni-bonn.de

Zum Thema Neutrophilen-Schwärme:
Dr. Tim Lämmermann
Laboratory of Systems Biology (Direktor: Dr. Ronald Germain)
NIAID, National Institutes of Health
Bethesda, MD, USA
E-Mail: laemmermannt@niaid.nih.gov

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften