Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fresszellen bekämpfen Eindringlinge im Schwarm

27.05.2013
Das Immunsystem schlägt immer dann Alarm, wenn Krankheitserreger eindringen. Fresszellen locken sich dann gegenseitig an und bilden große Schwärme, um die Eindringlinge gemeinsam zu bekämpfen.

Einem Team von US-Forschern unter der Beteiligung von Dr. Wolfgang Kastenmüller, mittlerweile Gruppenleiter an der Universität Bonn, ist es nun gelungen, die molekularen Grundlagen dieser Hilferufe zu entschlüsseln. Die Ergebnisse werden in der aktuellen Ausgabe des renommierten Fachjournals „Nature“ vorgestellt.


Fluoreszierende Neutrophile nach Infektion mit Pseudomonas: Neutrophilenschwärme sind weiß dargestellt, einzelne Neutrophile dagegen orange. Das obere Bild zeigt große Schwärme in einer intakten Maus, das untere orientierungslose, kleinere Schwärme in einer Maus, die über keinen LTB4-Rezeptor verfügt. Beide Bilder wurden 40 Minuten nach Beginn der Aufnahmen mit dem Mikroskop aufgezeichnet.
(c) Foto: Wolfgang Kastenmüller/Uni Bonn

Neutrophile Granulozyten, kurz „Neutrophile“, sind ein wichtiger Teil der Immunabwehr. Sie zählen zu den weißen Blutkörperchen und können als „Fresszellen“ zum Beispiel Eindringlinge zerstören und verletzte Gewebeteile verdauen. Neutrophile werden im Knochenmark gebildet und mit dem Blutstrom im Körper verteilt. „Wie Streifenpolizisten wachen sie darüber, ob etwa Krankheitserreger eingedrungen sind oder ob Gewebe zu Schaden gekommen ist“, berichtet Dr. Wolfgang Kastenmüller vom Institut für Molekulare Medizin und Experimentelle Immunologie der Universität Bonn. In der Blutbahn sind diese „Polizisten“ wie auf einer Autobahn besonders schnell unterwegs, sie können auf ihrer Jagd nach Erregern aber auch ins Gewebe eindringen.

Fresszellen reagieren wie die Polizei bei einem Großeinsatz

Während ihrer „Fahndung“ agieren die Neutrophilen wie die Polizei bei einem Großeinsatz: Hat eine der Fresszellen einen Erreger gefunden, ruft sie wie über Polizeifunk ihre Kollegen zur Hilfe. Daraufhin finden sich ganze Schwärme von Fresszellen zusammen, die gemeinsam die Eindringlinge bekämpfen. „Wie sich Neutrophile im Gewebe orientieren und diese faszinierenden Schwärme bilden, war zum Beginn unserer Arbeit weitgehend unbekannt“, berichten Dr. Tim Lämmermann und Dr. Ronald Germain, leitende Wissenschaftler dieser Studie an den National Institutes of Health in Bethesda (USA).

Deshalb untersuchte ein Team aus Wissenschaftlern des National Institute of Allergy and Infectious Diseases (NIAID) und des National Cancer Institute (NCI) unter Beteiligung von Dr. Kastenmüller systematisch die molekularen Grundlagen dieses Neutrophilen-Schwarmverhaltens.

Nach den Ergebnissen der Wissenschaftler sind mehrere Moleküle an der Zusammenballung zu einem Schwarm beteiligt. Dabei kommt jedoch der Substanz „LTB4“, welche an einen Rezeptor an der Oberfläche der Fresszellen andockt, eine Schlüsselrolle zu. Bei LTB4 handelt es sich um ein Leukotrien, das Entzündungsreaktionen des Körpers einleitet und aufrechterhält. Die Neutrophilen können selbst das LTB4 ausschütten, um ihre Kollegen anzulocken. Umgekehrt nehmen die Fresszellen es über ihre Rezeptoren war, sobald ein anderer Neutrophile damit zur Hilfe ruft.

Filmaufnahmen mit Spezialmikroskopen

Die Forscher fahndeten nach der gesuchten Substanz, indem sie bei Mäusen systematisch Gene für die Ausbildung verschiedener Rezeptoren ausschalteten, die für die Wanderung dieser Zellen wichtig sind. An diese verschiedenen Rezeptoren docken jeweils Stoffe an, die wie ein Schlüssel ins Schloss passen. Mit speziellen Mikroskopen - sogenannten Zwei-Photonen-Mikroskopen - beobachteten die Forscher, wie sich Neutrophilen-Schwärme um einen 0,01 Millimeter kleinen hitzebedingten Schaden bildeten, und hielten dies als Filmaufnahmen fest. „Fehlte der Rezeptor für das LTB4, konnten wir kaum Schwarmverhalten beobachten, weil nur sehr wenige Neutrophile angelockt werden konnten – damit war uns klar, dass wir ein äußerst wichtiges Schlüssel-Schloss-Paar in der Signalkette gefunden hatten“, sagt Dr. Lämmermann.

Die Frage war, ob die Fresszellen bei einer Infektion genauso reagierten wie bei dem Hitzeschaden. Dr. Kastenmüller testete dies, indem er Mäusen Bakterien unter die Haut spritzte und mit den Spezialmikroskopen das Verhalten der Fresszellen im drainierenden Lymphknoten aufzeichnete. In den Filmaufnahmen ist deutlich zu erkennen, dass sich die leuchtend markierten Neutrophilen in Form eines Schwarms zusammenballen, wenn das LTB4 an die Fresszellen andockt.

Über die genaue Funktion des Neutrophilen-Schwarmverhaltens können die Forscher momentan nur spekulieren. „Die Zusammenballung zu einem Schwarm ermöglicht eine sehr hohe lokale Konzentration an antibakteriellen Wirkstoffen, die durch die Neutrophilen ausgeschüttet werden. Wir vermuten daher, dass somit der Verbreitung von Keimen entgegengewirkt wird“, sagt Dr. Kastenmüller. Interessanterweise lösen sich die Schwärme nach einiger Zeit wieder auf, um sich gelegentlich an anderen Stellen neu zu bilden. Möglicherweise wird auf diese Weise unerwünschter Gewebeschaden durch Neutrophile verhindert. „Es gibt noch viele offene Fragen. Mit unserer Studie haben wir einen ersten Schritt getan, dieses Neutrophilen-Verhalten im Gewebe ein wenig besser zu verstehen“, sagt Dr. Lämmermann. In zukünftigen Arbeiten wollen die Forscher weiter das Schwarmverhalten untersuchen und testen, ob man es therapeutisch manipulieren kann, um entweder die Immunabwehr zu stärken oder chronische Entzündungen zu lindern.

Das Exzellenzcluster ImmunoSensation

Durch seinen Umzug an das Institut für Molekulare Medizin und Experimentelle Immunologie (IMMEI) im Januar 2013 ermöglicht Dr. Kastenmüller mit seiner Expertise für Zwei-Photonen-Mikroskopie von immunologischen Prozessen nun ähnliche Studien an der Universität Bonn. Dr. Kastenmüller ist Mitglied des Exzellenzclusters ImmunoSensation an der Universität Bonn, das von der Exzellenzinitiative in einer ersten Laufzeit von fünf Jahren mit insgesamt 28 Millionen Euro gefördert wird. Zusammen mit dem Forschungszentrum caesar und dem Deutschen Zentrum für Neurodegenerative Erkrankungen sowie weiteren wissenschaftlichen Partnern untersucht das Exzellenzcluster das Immunsystem als Sinnesorgan und dessen enge Verknüpfung mit dem Nervensystem und dem Stoffwechsel.

Publikation: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo, Nature, DOI: 10.1038/nature12175

Kontakt:

Zum Thema Zwei-Photonen-Mikroskopie:
Dr. Wolfgang Kastenmüller
Institut für Molekulare Medizin und Experimentelle Immunologie
Universität Bonn
Tel.: 0228/28711040
E-Mail: wkastenm@uni-bonn.de

Zum Thema Neutrophilen-Schwärme:
Dr. Tim Lämmermann
Laboratory of Systems Biology (Direktor: Dr. Ronald Germain)
NIAID, National Institutes of Health
Bethesda, MD, USA
E-Mail: laemmermannt@niaid.nih.gov

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie