Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freier Weg zum Schaltplan des Gehirns

15.04.2015

Die Kenntnis darüber, welche Nervenzelle wo mit welchen Zellen verbunden ist, würde unser Wissen über Funktionen und Krankheiten des Gehirns deutlich voranbringen. Wissenschaftler träumen daher schon lange davon, das Konnektom, den Schaltplan des Gehirns, zu entschlüsseln.

Mit der Entwicklung einer speziellen Färbemethode schließen Winfried Denk und Shawn Mikula vom Max-Planck-Institut für Neurobiologie in Martinsried nun eine der letzten methodischen Lücken: Die Kartierung eines gesamten Mäusegehirns scheint möglich. Ein Meilenstein-Projekt, bei dem allein die Datenerhebung mehrere Jahre dauern wird und auch die Analyse der zirka 40 Petabyte an Daten noch nicht vollständig geklärt ist.


Eine neue Färbemethode schließt eine der letzten methodischen Lücken auf dem Weg zur Kartierung aller Nervenzellen und ihrer Verbindungen, dem Konnektom, eines Mäusegehirns.

(c) MPI für Neurobiologie / Mikula

Seit Wissenschaftler im späten 19. Jahrhundert die ersten Nervenzellen unter dem Mikroskop betrachteten, hat sich viel getan. Heute sind viele Fragen zur Anatomie, Chemie, Physiologie und Zellbiologie beantwortet – sowohl im gesunden als auch im erkrankten Gehirn.

Wie aus der Aktivität einzelner Zellen jedoch unser Denken und Fühlen entsteht und was passiert, wenn Zellen zum Beispiel bei neurodegenerativen Erkrankungen aus dem Zellverband verschwinden, ist nach wie vor unklar. Um diese Dinge zu verstehen, müssen wir das Konnektom kennen – alle Nervenzellen und ihre Verbindungen.

Das menschliche Konnektom enthält rund 100 Billionen Zell-Verbindungen. Diese zu kartieren ist nach wie vor reines Wunschdenken. Die Entwicklung des Serienschnitt-Raster-Elektronenmikroskops und anderer Aufnahme- und Analysemethoden, lassen das Konnektom des Mäusegehirns, das 3000-mal kleiner als das des Menschen ist, nun jedoch in greifbare Nähe rücken.

"Ein entscheidender, noch fehlender Schritt war die Probenpräparation", fasst Shawn Mikula das Projekt zusammen. In den vergangenen Jahren hat er an der gleichmäßigen und zerstörungsfreien Färbung eines gesamten Mäusegehirns für das Elektronenmikroskop gearbeitet. Zuverlässig konnten bisherige Färbemethoden nur relativ kleine Gewebeproben färben.

Das Zerteilen des Gehirns in kleine Stücke verhindert jedoch ihr späteres Zusammensetzen zu einem Gesamtbild. Methoden, die eine Färbung des gesamten Gehirns zum Ziel hatten, färbten das Gehirn entweder zu schwach und ungleichmäßig, oder sie zerstörten Hirnstrukturen. Eine Rekonstruktion aller Nervenzellverbindungen blieb daher unmöglich.

Shawn Mikula und Winfried Denk stellen nun ihre BROPA-Methode zur Färbung eines gesamten Gehirns vor. Die Abkürzung steht für eine aufwändige Abfolge von Färbe- und Waschschritten, darunter mit Osmium- und Pyrogallol-Lösungen. Die gesamte Färbung und Vorbereitung dauert rund vier Wochen. "Das war zum Teil ganz schön nervig, denn man weiß erst am Ende dieser Zeit, ob eine Änderung im Färbeverfahren gut oder schlecht war", erklärt Shawn Mikula.

Doch nach vielem Warten und Verfeinern sind die beiden Wissenschaftler mit ihrer neuen Methode nun zufrieden: "Unsere Ergebnisse zeigen, dass in einem BROPA-gefärbten Mäusegehirn mit dem Serienschnitt-Raster-Elektronenmikroskop zuverlässig einzelne Nervenzellfortsätze verfolgt und Synapsen erkannt werden können", so Mikula. Ein wichtiger Erfolg für das Team, denn das Serienschnitt-Raster-Elektronenmikroskop erfand Winfried Denk vor mehr als zehn Jahren mit diesem Ziel vor Augen.

"Wir sind nun unserem Ziel, ein gesamtes Mäusegehirn mit allen Zellen und Verbindungen unter dem Elektronenmikroskop aufzunehmen und am Computer wieder zusammenzusetzen, einen wichtigen Schritt näher gekommen", erklärt Winfried Denk, Direktor am Max-Planck-Institut für Neurobiologie.

Sobald die neuste Gerätegeneration geliefert und getestet ist, was mit über einem Jahr veranschlagt ist, wollen die Wissenschaftler das Projekt starten. "Ich schätze, dass allein die Datenerhebung rund zweieinhalb Jahre dauern wird", so Denk. In dieser Zeit werden zirka 40 Petabyte Daten entstehen.

"Die Speicherung kriegen wir schon hin, an der Analyse arbeiten wir noch", fügt Mikula hinzu. Die bisherigen Ergebnisse zeigen, dass automatisierte Computerprogramme BROPA-gefärbte Synapsen und Zellkörper recht zuverlässig erkennen können. Somit bleibt "nur" noch ihre Zuordnung zu den vielen Kilometern vorhandener Nervenfasern.

"Ich bin zuversichtlich, dass wir auch das lösen können", sagt Winfried Denk. Vor dem Hintergrund der Entschlüsselung des menschlichen Genoms scheint dies tatsächlich nicht unwahrscheinlich: Als Mitte der siebziger Jahre des letzten Jahrhunderts die ersten DNA-Abschnitte entschlüsselt wurden, schien die Sequenzierung eines gesamten menschlichen Genoms anfänglich unmöglich.

HINTERGRUND: Das Serienschnitt-Raster-Elektronenmikroskop
Bei diesem automatisierten Prozess tastet ein Elektronenmikroskop die Oberfläche eines Gewebestücks ab; das gewonnene Bild wird gespeichert. Als nächstes schneidet das Gerät eine ultradünne Gewebescheibe ab und erfasst dann die darunter liegende Gewebeebene. Schnitt für Schnitt werden so alle Strukturen in dem vorliegenden Gewebe aufgenommen. Abschließend setzt ein Programm alle Bilder am Computer wieder zu der ursprünglichen dreidimensionalen Struktur zusammen. [Veröffentlicht in PLoS Biology 2, 2004]

ORIGINALVERÖFFENTLICHUNG
Shawn Mikula & Winfried Denk
High-resolution whole-brain staining for electron microscopic circuit reconstruction
Nature Methods, online 13. April 2015

KONTAKT
Prof. Dr. Winfried Denk
Max-Planck-Institut für Neurobiologie
Abteilung Elektronen – Photonen – Neuronen
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 - 3561
Email: wdenk@neuro.mpg.de

Dr. Shawn Mikula
Max-Planck-Institut für Neurobiologie
Abteilung Elektronen – Photonen – Neuronen
Tel.: 089 8578 3570
Email: mikula@neuro.mpg.de

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Presse- und Öffentlichkeitsarbeit
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 3514
Email: merker@neuro.mpg.de
  www.neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/denk/de - Webseite der Abteilung von Winfried Denk am MPI für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten