Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freier Weg zum Schaltplan des Gehirns

15.04.2015

Die Kenntnis darüber, welche Nervenzelle wo mit welchen Zellen verbunden ist, würde unser Wissen über Funktionen und Krankheiten des Gehirns deutlich voranbringen. Wissenschaftler träumen daher schon lange davon, das Konnektom, den Schaltplan des Gehirns, zu entschlüsseln.

Mit der Entwicklung einer speziellen Färbemethode schließen Winfried Denk und Shawn Mikula vom Max-Planck-Institut für Neurobiologie in Martinsried nun eine der letzten methodischen Lücken: Die Kartierung eines gesamten Mäusegehirns scheint möglich. Ein Meilenstein-Projekt, bei dem allein die Datenerhebung mehrere Jahre dauern wird und auch die Analyse der zirka 40 Petabyte an Daten noch nicht vollständig geklärt ist.


Eine neue Färbemethode schließt eine der letzten methodischen Lücken auf dem Weg zur Kartierung aller Nervenzellen und ihrer Verbindungen, dem Konnektom, eines Mäusegehirns.

(c) MPI für Neurobiologie / Mikula

Seit Wissenschaftler im späten 19. Jahrhundert die ersten Nervenzellen unter dem Mikroskop betrachteten, hat sich viel getan. Heute sind viele Fragen zur Anatomie, Chemie, Physiologie und Zellbiologie beantwortet – sowohl im gesunden als auch im erkrankten Gehirn.

Wie aus der Aktivität einzelner Zellen jedoch unser Denken und Fühlen entsteht und was passiert, wenn Zellen zum Beispiel bei neurodegenerativen Erkrankungen aus dem Zellverband verschwinden, ist nach wie vor unklar. Um diese Dinge zu verstehen, müssen wir das Konnektom kennen – alle Nervenzellen und ihre Verbindungen.

Das menschliche Konnektom enthält rund 100 Billionen Zell-Verbindungen. Diese zu kartieren ist nach wie vor reines Wunschdenken. Die Entwicklung des Serienschnitt-Raster-Elektronenmikroskops und anderer Aufnahme- und Analysemethoden, lassen das Konnektom des Mäusegehirns, das 3000-mal kleiner als das des Menschen ist, nun jedoch in greifbare Nähe rücken.

"Ein entscheidender, noch fehlender Schritt war die Probenpräparation", fasst Shawn Mikula das Projekt zusammen. In den vergangenen Jahren hat er an der gleichmäßigen und zerstörungsfreien Färbung eines gesamten Mäusegehirns für das Elektronenmikroskop gearbeitet. Zuverlässig konnten bisherige Färbemethoden nur relativ kleine Gewebeproben färben.

Das Zerteilen des Gehirns in kleine Stücke verhindert jedoch ihr späteres Zusammensetzen zu einem Gesamtbild. Methoden, die eine Färbung des gesamten Gehirns zum Ziel hatten, färbten das Gehirn entweder zu schwach und ungleichmäßig, oder sie zerstörten Hirnstrukturen. Eine Rekonstruktion aller Nervenzellverbindungen blieb daher unmöglich.

Shawn Mikula und Winfried Denk stellen nun ihre BROPA-Methode zur Färbung eines gesamten Gehirns vor. Die Abkürzung steht für eine aufwändige Abfolge von Färbe- und Waschschritten, darunter mit Osmium- und Pyrogallol-Lösungen. Die gesamte Färbung und Vorbereitung dauert rund vier Wochen. "Das war zum Teil ganz schön nervig, denn man weiß erst am Ende dieser Zeit, ob eine Änderung im Färbeverfahren gut oder schlecht war", erklärt Shawn Mikula.

Doch nach vielem Warten und Verfeinern sind die beiden Wissenschaftler mit ihrer neuen Methode nun zufrieden: "Unsere Ergebnisse zeigen, dass in einem BROPA-gefärbten Mäusegehirn mit dem Serienschnitt-Raster-Elektronenmikroskop zuverlässig einzelne Nervenzellfortsätze verfolgt und Synapsen erkannt werden können", so Mikula. Ein wichtiger Erfolg für das Team, denn das Serienschnitt-Raster-Elektronenmikroskop erfand Winfried Denk vor mehr als zehn Jahren mit diesem Ziel vor Augen.

"Wir sind nun unserem Ziel, ein gesamtes Mäusegehirn mit allen Zellen und Verbindungen unter dem Elektronenmikroskop aufzunehmen und am Computer wieder zusammenzusetzen, einen wichtigen Schritt näher gekommen", erklärt Winfried Denk, Direktor am Max-Planck-Institut für Neurobiologie.

Sobald die neuste Gerätegeneration geliefert und getestet ist, was mit über einem Jahr veranschlagt ist, wollen die Wissenschaftler das Projekt starten. "Ich schätze, dass allein die Datenerhebung rund zweieinhalb Jahre dauern wird", so Denk. In dieser Zeit werden zirka 40 Petabyte Daten entstehen.

"Die Speicherung kriegen wir schon hin, an der Analyse arbeiten wir noch", fügt Mikula hinzu. Die bisherigen Ergebnisse zeigen, dass automatisierte Computerprogramme BROPA-gefärbte Synapsen und Zellkörper recht zuverlässig erkennen können. Somit bleibt "nur" noch ihre Zuordnung zu den vielen Kilometern vorhandener Nervenfasern.

"Ich bin zuversichtlich, dass wir auch das lösen können", sagt Winfried Denk. Vor dem Hintergrund der Entschlüsselung des menschlichen Genoms scheint dies tatsächlich nicht unwahrscheinlich: Als Mitte der siebziger Jahre des letzten Jahrhunderts die ersten DNA-Abschnitte entschlüsselt wurden, schien die Sequenzierung eines gesamten menschlichen Genoms anfänglich unmöglich.

HINTERGRUND: Das Serienschnitt-Raster-Elektronenmikroskop
Bei diesem automatisierten Prozess tastet ein Elektronenmikroskop die Oberfläche eines Gewebestücks ab; das gewonnene Bild wird gespeichert. Als nächstes schneidet das Gerät eine ultradünne Gewebescheibe ab und erfasst dann die darunter liegende Gewebeebene. Schnitt für Schnitt werden so alle Strukturen in dem vorliegenden Gewebe aufgenommen. Abschließend setzt ein Programm alle Bilder am Computer wieder zu der ursprünglichen dreidimensionalen Struktur zusammen. [Veröffentlicht in PLoS Biology 2, 2004]

ORIGINALVERÖFFENTLICHUNG
Shawn Mikula & Winfried Denk
High-resolution whole-brain staining for electron microscopic circuit reconstruction
Nature Methods, online 13. April 2015

KONTAKT
Prof. Dr. Winfried Denk
Max-Planck-Institut für Neurobiologie
Abteilung Elektronen – Photonen – Neuronen
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 - 3561
Email: wdenk@neuro.mpg.de

Dr. Shawn Mikula
Max-Planck-Institut für Neurobiologie
Abteilung Elektronen – Photonen – Neuronen
Tel.: 089 8578 3570
Email: mikula@neuro.mpg.de

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Presse- und Öffentlichkeitsarbeit
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 3514
Email: merker@neuro.mpg.de
  www.neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/denk/de - Webseite der Abteilung von Winfried Denk am MPI für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie