Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie Bahn für größeres Gehirn

07.09.2009
Kurze Phase der Zellteilung von Stammzellen könnte Erklärung für evolutionäres Geheimnis liefern

Dresdner Regenerationsforscher haben einen Weg gefunden, die Vermehrung körpereigener Stammzellen im Gehirn zu steuern. Die Länge der Zeitspanne zwischen zwei Zellteilungen beeinflusst maßgeblich, wie viele Stamm- und reife Nervenzellen gebildet werden.

Den Wissenschaftlern gelang der Nachweis, dass die Verkürzung dieser Zeit die Vermehrung von Stammzellen ermöglicht und dadurch das Gehirn vergrößern kann. Diese Ergebnisse untermauern eine Hypothese der Evolutionsforschung mit experimentellen Daten und könnten gleichzeitig den Weg für Therapien bei Schlaganfall ebnen.

Die Entstehung und Reifung des Nervensystems ist ein wichtiger Prozess, in dem Eigenschaften von körpereigenen Stammzellen untersucht werden können. Während der embryonalen Entwicklung des Gehirns schalten neurale Stammzellen immer mehr dazu um, bei der Zellteilung statt zwei Stammzellen mindestens eine Nervenzelle zu bilden, die sich dann nicht weiter teilt. Der Zeitpunkt dieses Umschaltens zur Bildung von Nervenzellen (Neurogenese) reguliert die Balance zwischen Vermehrung, Selbsterneuerung und Verbrauch des Vorrates an Stammzellen, wodurch wiederum die Größe des Gehirns festgelegt wird. Bisher war höchst umstritten, ob eine simple Änderung der Zeitspanne zwischen zwei Zellteilungen die Differenzierung der Tochterzellen hin zur Nervenneubildung beeinflusst.

In der aktuellen Ausgabe von Cell Stem Cell zeigen Dr. Federico Calegari und Christian Lange vom DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD), dass die Dauer der Zellteilung, speziell der sogenannten G1 Phase, wesentlich das Umschalten von Stammzellvermehrung zur Neurogenese steuert. So ist eine längere G1 Phase notwendig zur Bildung von Nervenzellen. Eine kürzere G1 Phase dagegen hemmt deren Bildung und fördert die Vermehrung von Stammzellen - eine wichtige Voraussetzung für regenerative Therapien. Die Studie ist gemeinsam mit Prof. Wieland Huttner vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden entstanden.

Um aufzuklären, welchen Effekt die Dauer der G1 Phase auf die Bildung von Nervenzellen hat, erhöhten die Forscher die Menge eines Proteinkomplexes cdk4 und cyclinD1 im Gehirn sich entwickelnder Maus-Embryonen, mit dem Resultat, dass sich die Länge der G1 Phase verkürzte. "Unsere Theorie war, dass eine kürzere G1 Phase die Neurogenese unterdrücken sollte und sich die Stammzellen vermehren. Da der Effekt nach wenigen Tagen nachlässt, sollten die vermehrten Stammzellen dann wieder Nervenzellen bilden und somit die Oberfläche der Hirnrinde vergrößern", so Dr. Federico Calegari, Forschungsgruppenleiter im CRTD. Genau das haben die Wissenschaftler dann auch beobachtet. Aber die Studie hielt auch Überraschungen bereit: Die Verkürzung der G1 Phase bewirkte, dass anstelle der Nervenzellen eine besondere Art von Stammzellen gebildet wurde: sogenannte basale Progenitorzellen. Diese Zellen wandern in die benachbarte Hirnregion, die subventrikuläre Zone ein, vermehren sich dort, können aber im Gegensatz zu normalen neuralen Stammzellen ausschließlich zu Nervenzellen differenzieren. "Aufgrund der vermehrten Bildung der basalen Progenitorzellen konnten wir eine Vergrößerung der subventrikulären Zone um 40% im Gehirn der Mäuse beobachten. Weiterhin waren die Nervenzellen, die von den veränderten Stammzellen gebildet wurden, auf ein größeres Gebiet der Großhirnrinde verteilt", fasst Christian Lange, Doktorand bei Dr. Calegari, die Ergebnisse zusammen.

Die experimentellen Daten der Studie belegen die Hypothese, dass ein erhöhter Anteil an basalen Progenitorzellen in höheren Säugetieren der Grund für die Vergrößerung der Hirnrinde während der Evolution ist. Bisher konnten nur vergleichende Untersuchungen in verschiedenen Arten gemacht werden. "Wir konnten zum ersten Mal in derselben Art mit Daten zeigen, dass die Vermehrung der basalen Progenitorzellen die Oberfläche der Hirnrinde vergrößert, die durch diese Zellen gebildet wird", so Dr. Calegari. Vor allem bieten die Ergebnisse der Studie neue Einblicke in die Vermehrung und Differenzierung körpereigener Stammzellen. Erstmals konnte bewiesen werden dass Zeit - als Dauer der Zellteilung - ein wesentlicher Faktor bei der Steuerung dieser Vermehrung ist. Eine ähnliche Rolle könnte der Faktor Zeit auch bei der Vermehrung oder Differenzierung von adulten neuralen Stammzellen spielen. Bei Schlaganfällen können diese Ergebnisse zu neuen Therapien verhelfen. Christian Lange erklärt: "Nach einem Schlaganfall können nur wenige der abgestorbenen Zellen im Gehirn wieder regeneriert werden. Dazu gibt es zu wenige Stammzellen. Wenn man einen Weg findet, deren Anzahl zu steigern, z.B. durch die Verkürzung der G1 Phase, könnte Schlaganfall-Patienten geholfen werden." Diese Studie ist ein wichtiger Schritt auf dem Weg dahin.

Originalveröffentlichung: Christian Lange, Wieland B. Huttner, Federico Calegari Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis and promotes the generation and expansion of basal progenitors. Cell Stem Cell. (2009). DOI 10.1016/j.stem.2009.05.026

Begriffe:
G1-Phase: Erste Phase des Zeitraumes zwischen zwei Zellteilungen zwischen der Neubildung der Zelle und der DNA-Verdoppelung für die nächste Zellteilung. In dieser Phase wächst die Zelle und nimmt Signale aus der Umgebung auf, die das weitere Schicksal der Zelle festlegen.

Subventrikuläre Zone: Gehirnregion unterhalb der Großhirnrinde. In dieser Zone befinden sich Stammzellen und neu gebildete Nervenzellen. In der Evolution der Säugetiere ist die subventrikuläre Zone stark vergrößert.

Kontakt für Journalisten:
Katrin Bergmann, Pressesprecherin CRTD
Tel.: 0351 463 40347, E-Mail: katrin.bergmann@crt-dresden.de,
Christian Lange, Doktorand am CRTD
Tel.: 0351 210 2454, E-Mail: christian.lange@crt-dresden.de

Katrin Bergmann | idw
Weitere Informationen:
http://www.crt-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie