Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie Bahn für größeres Gehirn

07.09.2009
Kurze Phase der Zellteilung von Stammzellen könnte Erklärung für evolutionäres Geheimnis liefern

Dresdner Regenerationsforscher haben einen Weg gefunden, die Vermehrung körpereigener Stammzellen im Gehirn zu steuern. Die Länge der Zeitspanne zwischen zwei Zellteilungen beeinflusst maßgeblich, wie viele Stamm- und reife Nervenzellen gebildet werden.

Den Wissenschaftlern gelang der Nachweis, dass die Verkürzung dieser Zeit die Vermehrung von Stammzellen ermöglicht und dadurch das Gehirn vergrößern kann. Diese Ergebnisse untermauern eine Hypothese der Evolutionsforschung mit experimentellen Daten und könnten gleichzeitig den Weg für Therapien bei Schlaganfall ebnen.

Die Entstehung und Reifung des Nervensystems ist ein wichtiger Prozess, in dem Eigenschaften von körpereigenen Stammzellen untersucht werden können. Während der embryonalen Entwicklung des Gehirns schalten neurale Stammzellen immer mehr dazu um, bei der Zellteilung statt zwei Stammzellen mindestens eine Nervenzelle zu bilden, die sich dann nicht weiter teilt. Der Zeitpunkt dieses Umschaltens zur Bildung von Nervenzellen (Neurogenese) reguliert die Balance zwischen Vermehrung, Selbsterneuerung und Verbrauch des Vorrates an Stammzellen, wodurch wiederum die Größe des Gehirns festgelegt wird. Bisher war höchst umstritten, ob eine simple Änderung der Zeitspanne zwischen zwei Zellteilungen die Differenzierung der Tochterzellen hin zur Nervenneubildung beeinflusst.

In der aktuellen Ausgabe von Cell Stem Cell zeigen Dr. Federico Calegari und Christian Lange vom DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD), dass die Dauer der Zellteilung, speziell der sogenannten G1 Phase, wesentlich das Umschalten von Stammzellvermehrung zur Neurogenese steuert. So ist eine längere G1 Phase notwendig zur Bildung von Nervenzellen. Eine kürzere G1 Phase dagegen hemmt deren Bildung und fördert die Vermehrung von Stammzellen - eine wichtige Voraussetzung für regenerative Therapien. Die Studie ist gemeinsam mit Prof. Wieland Huttner vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden entstanden.

Um aufzuklären, welchen Effekt die Dauer der G1 Phase auf die Bildung von Nervenzellen hat, erhöhten die Forscher die Menge eines Proteinkomplexes cdk4 und cyclinD1 im Gehirn sich entwickelnder Maus-Embryonen, mit dem Resultat, dass sich die Länge der G1 Phase verkürzte. "Unsere Theorie war, dass eine kürzere G1 Phase die Neurogenese unterdrücken sollte und sich die Stammzellen vermehren. Da der Effekt nach wenigen Tagen nachlässt, sollten die vermehrten Stammzellen dann wieder Nervenzellen bilden und somit die Oberfläche der Hirnrinde vergrößern", so Dr. Federico Calegari, Forschungsgruppenleiter im CRTD. Genau das haben die Wissenschaftler dann auch beobachtet. Aber die Studie hielt auch Überraschungen bereit: Die Verkürzung der G1 Phase bewirkte, dass anstelle der Nervenzellen eine besondere Art von Stammzellen gebildet wurde: sogenannte basale Progenitorzellen. Diese Zellen wandern in die benachbarte Hirnregion, die subventrikuläre Zone ein, vermehren sich dort, können aber im Gegensatz zu normalen neuralen Stammzellen ausschließlich zu Nervenzellen differenzieren. "Aufgrund der vermehrten Bildung der basalen Progenitorzellen konnten wir eine Vergrößerung der subventrikulären Zone um 40% im Gehirn der Mäuse beobachten. Weiterhin waren die Nervenzellen, die von den veränderten Stammzellen gebildet wurden, auf ein größeres Gebiet der Großhirnrinde verteilt", fasst Christian Lange, Doktorand bei Dr. Calegari, die Ergebnisse zusammen.

Die experimentellen Daten der Studie belegen die Hypothese, dass ein erhöhter Anteil an basalen Progenitorzellen in höheren Säugetieren der Grund für die Vergrößerung der Hirnrinde während der Evolution ist. Bisher konnten nur vergleichende Untersuchungen in verschiedenen Arten gemacht werden. "Wir konnten zum ersten Mal in derselben Art mit Daten zeigen, dass die Vermehrung der basalen Progenitorzellen die Oberfläche der Hirnrinde vergrößert, die durch diese Zellen gebildet wird", so Dr. Calegari. Vor allem bieten die Ergebnisse der Studie neue Einblicke in die Vermehrung und Differenzierung körpereigener Stammzellen. Erstmals konnte bewiesen werden dass Zeit - als Dauer der Zellteilung - ein wesentlicher Faktor bei der Steuerung dieser Vermehrung ist. Eine ähnliche Rolle könnte der Faktor Zeit auch bei der Vermehrung oder Differenzierung von adulten neuralen Stammzellen spielen. Bei Schlaganfällen können diese Ergebnisse zu neuen Therapien verhelfen. Christian Lange erklärt: "Nach einem Schlaganfall können nur wenige der abgestorbenen Zellen im Gehirn wieder regeneriert werden. Dazu gibt es zu wenige Stammzellen. Wenn man einen Weg findet, deren Anzahl zu steigern, z.B. durch die Verkürzung der G1 Phase, könnte Schlaganfall-Patienten geholfen werden." Diese Studie ist ein wichtiger Schritt auf dem Weg dahin.

Originalveröffentlichung: Christian Lange, Wieland B. Huttner, Federico Calegari Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis and promotes the generation and expansion of basal progenitors. Cell Stem Cell. (2009). DOI 10.1016/j.stem.2009.05.026

Begriffe:
G1-Phase: Erste Phase des Zeitraumes zwischen zwei Zellteilungen zwischen der Neubildung der Zelle und der DNA-Verdoppelung für die nächste Zellteilung. In dieser Phase wächst die Zelle und nimmt Signale aus der Umgebung auf, die das weitere Schicksal der Zelle festlegen.

Subventrikuläre Zone: Gehirnregion unterhalb der Großhirnrinde. In dieser Zone befinden sich Stammzellen und neu gebildete Nervenzellen. In der Evolution der Säugetiere ist die subventrikuläre Zone stark vergrößert.

Kontakt für Journalisten:
Katrin Bergmann, Pressesprecherin CRTD
Tel.: 0351 463 40347, E-Mail: katrin.bergmann@crt-dresden.de,
Christian Lange, Doktorand am CRTD
Tel.: 0351 210 2454, E-Mail: christian.lange@crt-dresden.de

Katrin Bergmann | idw
Weitere Informationen:
http://www.crt-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics