Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiburger Forschungsteam entwickelt künstliche Oberflächen, auf denen Insekten nicht anhaften können

24.09.2013
Vorsicht, Rutschgefahr!

Käfer, Kakerlaken und Ameisen werden es in Zukunft schwer haben, wenn sie sich in Häusern oder Klimaanlagen einnisten wollen – dank der unbegehbaren Oberflächen, die die Freiburger Biologen Prof. Dr. Thomas Speck, Dr. Bettina Prüm und Dr. Holger Bohn zusammen mit der Plant Biomechanics Group der Albert-Ludwigs-Universität nach pflanzlichen Vorbildern entwickeln.


Quelle: Plant Biomechanics Group Freiburg

Das Team untersuchte Oberflächen von Pflanzenblättern, um herauszufinden, wie sich Zellform und Mikrostruktur sowie die Oberflächenchemie auf das Haftverhalten von Insekten auswirken.

Die Forscherinnen und Forscher stellten Laufhaftkraft-Experimente mit Kartoffelkäfern auf unterschiedlich strukturierten Pflanzenoberflächen sowie auf Nachbildungen aus Kunstharzen an. Mit einem hochsensiblen Sensor maß das Team die Kraft, die der Käfer beim Laufen auf verschiedenen Oberflächen aufbringt.

Das Ergebnis: Wellige oder stark gewölbte Zellen können die Haftfähigkeit von Käfern verstärken, während Mikrostrukturen aus Wachskristallen oder Kutikularfalten diese verringern. Letztere sind kleine Falten in der Kutikula, einer polyesterähnlichen Schutzschicht auf der Blattaußenhaut. Am schlechtesten liefen die Käfer auf Oberflächen mit Kutitkularfalten, die etwa 0,5 Mikrometer hoch und breit und in einem Abstand zwischen 0,5 und 1,5 Mikrometern angeordnet waren.

„Das ist die perfekte Anti-Haftoberfläche. Hier rutschen die Insekten viel stärker ab als auf Glas“, sagt Projektleiter Thomas Speck. Durch die Kutikularfalten verkleinert sich die Kontaktfläche der an den Käferbeinen befindlichen Hafthaare mit der Pflanzenoberfläche. Anders als bei gröber strukturierten Oberflächen kann sich der Käfer nicht mit seinen Klauen in den Kutikularfalten verankern. Die Mikrostruktur der Oberfläche hat demnach eine größere Auswirkung auf das Anhaften der Käfer als die Zellform.

Das Team untersuchte zudem durch Kontaktwinkelmessungen die Benetzbarkeit der verschiedenen Oberflächen. Die Forscher verwendeten wasserabweisende und wasserliebende künstliche Abformungen der mikrostrukturierten Pflanzenoberflächen, um den Einfluss der Oberflächenchemie auf die Oberflächenbenetzbarkeit und das Laufverhalten der Käfer zu untersuchen. Kutikularfalten, ähnlich wie Wachskristalle, weisen Wasser sehr gut ab. Im Gegensatz zur Benetzbarkeit, die sowohl von der Mikrostruktur als auch von der Chemie der Oberfläche abhängt, wird das Laufverhalten der Käfer von der Oberflächenchemie nicht beeinflusst. Das bedeutet, dass die Laufhaftkraft nur von der physikalischen Mikrostruktur der Oberfläche abhängt.

Die Ergebnisse haben Speck und sein Team in der aktuellen Ausgabe des Wissenschaftsjournals „Acta Biomaterialia“ veröffentlicht. Die unbegehbaren Oberflächen könnten zukünftig Belüftungsrohre von Klimaanlagen auskleiden, in denen sich Kakerlaken und andere Insekten tummeln. Ebenso könnten die Oberflächen an Hausfassaden und Fenstersimsen angebracht werden, um zu verhindern, dass überwiegend laufende Schadinsektenarten eindringen und an Nahrungsmittel und Medikamente gehen. „Gerade in den Tropen ist dieser Aspekt besonders wichtig“, sagt Speck.

Die biologische Grundlagenforschung zu den Anti-Haftoberflächen wird zukünftig am Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien (FIT) angesiedelt. Dort werden die Forscher auch die Materialentwicklung bis hin zum Prototyp vorantreiben. „Die künstlichen Oberflächen wollen wir mit den Kolleginnen und Kollegen vom FIT zudem schaltbar machen, sodass diese sich zum Beispiel dehnen oder schrumpfen und so an verschiedene Insektengruppen und deren Haarstruktur angepasst werden können“, erläutert der Projektleiter.

Hintergrundinformation:
Das FIT ist eine zentrale wissenschaftliche Einrichtung der Albert-Ludwigs-Universität Freiburg. Es betreibt fakultäts- und fächerübergreifende Grundlagenforschung zu interaktiven Materialien und intelligenten Systemen, die sich am Vorbild der Natur orientieren. Wichtige Impulse kommen aus der Materialforschung, Mikrosystemtechnik, Physik, Chemie, Bionik, Medizin und den Polymerwissenschaften. http://www.fit.uni-freiburg.de
Originalveröffentlichung:
B. Prüm, R. Seidel, H.F. Bohn, S. Rubach & T. Speck (2013): Microscopical surface roughness: a relevant factor for slipperiness of plant surfaces with cuticular folds and their replica. – Acta Biomaterialia, 9: 6360 – 6368.
Kontakt:
Prof. Dr. Thomas Speck
Plant Biomechanics Group Freiburg
Botanischer Garten der Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
Fax: 0761/203-2880
E-Mail: thomas.speck@biologie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/pm/2013/pm.2013-09-24.249-en?set_language=en

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte